

The Perfect Match

Contenido

Somos Oxtein	2
Tratamiento superficial Oxigenna®	Z
The Perfect Match	E
Investigación científica	E
Comité científico	E
Máxima simplicidad	10
Servicios	11
Sistema versátil	12
Odontogramas	14
Oxtein M12	17
Oxtein M8	83
Oxtein L35	133
Oxtein L6	193
Oxtein N6	253
Instrumental Universal	311
Btl	015

Somos Oxtein

Más de 20 años de experiencia avalan la calidad de nuestros implantes que se comercializan en más de 20 países.

Oxtein Iberia nace de la fusión entre el fabricante de implantes europeo Stein SRL y un gran equipo humano especializado para la comercialización en exclusiva en nuestro país.

Stein SRL está formado por profesionales que durante más de 20 años se han dedicado a la innovación en la implantología dental, biomedicina e ingeniería mecánica.

Gracias a sus conocimientos y a su know-how en este ámbito, logramos dar una respuesta profesional a los siguientes aspectos:

Diseñamos geometrías y conexiones en base a la experiencia clínica, evidencia científica y a la demanda del mercado.

Ajuste de la parte protésica

Las conexiones de nuestros implantes y aditamentos protésicos están fabricados bajo un margen de tolerancia de 10 milésimas de milímetro (0.001).

The Perfect Match

Proceso de fabricación vanguardista

La tecnología punta presente en el proceso de fabricación de los implantes Oxtein, así como la inversión constante en recursos humanos especializados, son garantía de la calidad e innovación que ofrecemos a nuestros clientes.

En nuestra misión de mejora continua e impulsados por la pasión que nos distingue, estamos en constante estudio y búsqueda de soluciones para optimizar la calidad y comportamiento de nuestras líneas de producto.

Fiabilidad garantizada en todo el proceso

Especialistas en implantes

Fabricamos nuestros implantes en Stein SRL en Italia bajo las normativas de calidad ISO9001-2008 e ISO13485-2004, y realizamos controles de calidad específicos en todas las unidades producidas:

Verificamos unitariamente todas las referencias sin procesos aleatorios.

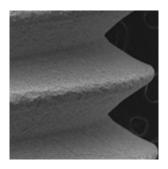
Garantizamos la perfecta funcionalidad de los componentes y ajuste pasivo entre el implante y el aditamento protésico.

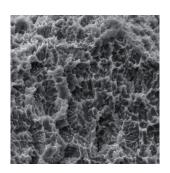
Todos nuestros implantes están fabricados en titanio de grado IV (cold worked) y titanio grado V (TiAl6V4-ELI-2).

Esta técnica, cold worked, refuerza el titanio por compactación, denominada también "técnica de rolado", ésta asegura la uniformidad de la microestructura cristalina y mejora más del 40% sus características mecánicas. Mantiene la composición pura del titanio grado IV y aumenta la capacidad máxima de resistencia estática a la fatiga, incrementando ésta de 550MPa a más de 850MPa. Las barras de titanio están rectificadas respetando una tolerancia H6, para proporcionar una mejor precisión en el mecanizado.

Tratamiento superficial Oxigenna®

Más de 20 años de resultados garantizan el éxito de nuestro tratamiento superficial Oxigenna.

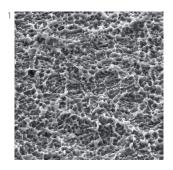

Contamos con técnicas avanzadas para el análisis de la composición química de las capas que entran en contacto directo con el tejido óseo y con estudios externos contrastados sobre el tratamiento superficial.

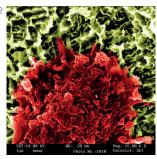

Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants", M. Morra, C. Cassinelli, G. Cascardo, L. Mazzucco, P. Borzini, M. Fini, G. Giavaresi, R. Giardino. 2007. Italia.

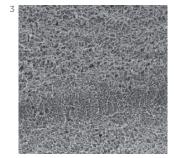
Esterilización por radiación gamma

La radiación gamma es un proceso de esterilización en frío, mediante el cual el producto no está sometido a cambios significativos de temperatura. Este proceso proporciona una mayor seguridad con respecto a los demás métodos de esterilización y descontaminación microbiológica ya que cada pieza se irradia desde el núcleo hasta el exterior.

Tratamiento superficial Oxigenna®


Nuestro centro de investigación cuenta con 23 años de experiencia en realizar tratamientos superficiales sobre implantes dentales a nivel internacional.


La microtopografía del tratamiento superficial Oxigenna*, conseguida mediante un proceso de arenado y doble ataque ácido, genera una macro y micro rugosidad en la superficie y estimula la diferenciación celular y los mecanismos que regulan el crecimiento de las células osteogénicas.


Las imágenes demuestran que nuestro tratamiento superficial favorece el anclaje inicial de los osteoblastos (fig. 1 y 2) y la integración con el tejido óseo (fig. 2).

Está ampliamente demostrado que la unión del hueso es mayor en una superficie rugosa, mejorando en gran medida el contacto entre el hueso y el implante BIC (Bone Impact Contact) (fig. 2).

La superficie de nuestros implantes es capaz de promover la diferenciación de las células osteoblásticas. La estructura capilar de nuestra superficie tratada favorece la absorción de los factores de crecimiento y proporciona un proceso de regeneración del hueso más rápido y favorable.

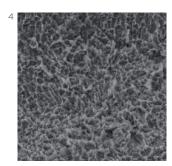
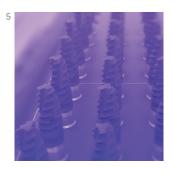


Fig. 3 y 4.

En la topografía de la superficie Oxigenna® se puede observar una estructura perfectamente adecuada para estimular las etapas iniciales de la regeneración ósea, por medio de la activación de la sangre, de la formación de coágulos y de la liberación de factores de crecimiento gracias a la activación de las plaquetas.


La densa rugosidad de la superficie Oxigenna® permite una gran absorción de los componentes de la sangre y una estimulación sustancial de las células, con la rápida formación de hueso integrado de manera robusta y rápida con la superficie del implante para conseguir excelentes resultados clínicos.

Plasma de Argón

Gracias a un proceso de descontaminación con plasma de Argón, se consigue una composición química superficial pura que promueve la adhesión celular y garantiza la eliminación total y la ausencia de posibles endotoxinas adheridas.

Fig. 5.

Imagen de los implantes tratados durante la exposición al plasma de Argón.

Resultados avalados por estudios científicos

Estudio	Doctor	Año
Efectos sobre las propiedades interfaciales y sobre la adhesión celular de la modificación de la superficie por regiones Peptic Hairy.	Marco Morra, Clara Cassinelli and Giovanna Cascardo.	2007
Superficies de titanio recubiertas por colágeno l: adhesión celular mesenquimal y evaluación en vivo en implantes óseos trabeculares.	Marco Morra, Clara Cassinelli, Giovanna Cascardo, L. Mazzucco, P. Borzini, Milena Fini, G. Giavaresi, Roberto Giardino.	2007
Química superficial orgánica sobre superficies de titanio por deposición de una película delgada.	Marco Morra, Clara Cassinelli.	2008
Reducción de la acumulación de placa sobre la película delgada de hidrocarburo depositada sobre los polímeros acrílicos restauradores.	M. Bellanda, Clara Cassinelli, Marco Morra.	2008
Evaluación de la relación entre coste y calidad de la limpieza de la superficie de algún sistema de implante que esté en el mercado.	Marco Morra, Clara Cassinelli, Giovanna Cascardo, Daniele Bollati.	2012
El plasma frío en el tratamiento de las superficies.	Giovanna Cascardo, Clara Cassinelli.	2014
Evaluación de la composición química de la superficie, diseño, citotoxicidad y adhesión celular en implantes dentales.	Marco Morra, Clara Cassinelli.	2016
Interacciones biológicas sobre materiales superficiales: Comprensión y Control de Proteínas, Células y Tejidos.	Marco Morra, Clara Cassinelli, Giovanna Cascardo, Daniele Bollati.	2016
Superficies de titanio recubiertas por colágeno l para la implantación ósea.	Marco Morra, Clara Cassinelli, Giovanna Cascardo, Daniele Bollati.	2016
Efectos de la química de la superficie sobre la modificación topográfica de las superficies de los implantes dentales de titanio: experimentos in vitro.	Marco Morra, Clara Cassinelli, Giuseppe Bruzzone, Angelo Carpi, Giuseppe Di Santi, Roberto Giardino, Milena Fini.	2016
Actualidad y perspectivas futuras de las superficies de los implantes.	Marco Morra, Clara Cassinelli, Giovanna Cascardo.	2016
Evaluación comparativa de la respuesta celular a los motivos micro y nanotopográficos sobre las superficies de los implantes.	Marco Morra, Clara Cassinelli, Giovanna Cascardo, Daniele Bollati.	2016
Evaluación in vitro de la respuesta de las células inflamatorias a los tornillos para implantes con diferentes superficies de implantes.	Fabio Colombelli, Marco Morra, Clara Cassinelli, Daniele Bollati.	2016

Oxtein The Perfect Match

Nuestro I+D es llevado a cabo por un grupo de profesionales dedicados a la odontología y especialistas en implantes que analizan y desarrollan uno a uno todos los aspectos más importantes de nuestros sistemas.

Testimonios

1

Dr. Fernández Ruiz, Clínica Fernández, Ibiza

El implante M12 incorpora 3 microespiras porque la tendencia actual demuestra que la parte superior lisa ayuda a evitar la compresión. Además. elimina la pérdida de absorción ósea y favorece la osteointegración.

3 Dr. Dueñas Carrillo, Clínica Museu, Barcelona

El implante cónico Oxtein N6 es sumamente autorroscante por lo que gana estabilidad primaria con mucha facilidad aún en casos "post-extracción". Respecto a la caja quirúrgica, sólo decir que llena todas mis expectativas permitiéndome colocar cinco de los seis sistemas de implantes que ofrece la marca por lo que me facilita poder escoger libremente qué implante es el ideal para cada caso.

5 Dr. Félix Puche, Madrid

Es un sistema de implantes bien documentado con investigación previa, y luego además el diseño me facilita muchísimo lo que yo quiero lograr en la estética de los dientes anteriores. El M12 cumple las expectativas que yo deseaba de un implante con base científica, con una conexión interna, y que con su diseño me aporta lo que yo quiero lograr.

Dr. Francisco Martínez Rus Madrid

Oxtein cuenta con un amplio abanico de soluciones restauradoras que permiten satisfacer todas las indicaciones clínicas con unos resultados estéticos y funcionales predecibles. Además, todos sus sistemas están diseñados para un manejo sencillo y fabricados con los mayores estándares de calidad para asegurar la seguridad y fiabilidad a largo plazo.

Dr. Marcel Wainwright Estocolmo

La técnica con la que se han hecho los pilares de cicatrización del sistema Oxtein está muy bien concebida porque permite un crecimiento de más tejido blando debido a la forma de los mismos. Es necesario manipular el tejido blando en la región estética, y cuando tengo más tejido para manipular, los procedimientos son mucho más sencillos, este es un gran beneficio de los aditamentos protésicos Oxtein.

2

Dr. José Antonio Rey, Orense

El implante Oxtein M12 asegura gran estética para zonas anteriores. Los tejidos blandos se remodelan muy bien utilizando sus pilares de cicatrización. De los mejores implantes para colocar post-extracción. Gran estabilidad primaría. Permite cargas prematuras.

Dr. Juan José Rodríguez Lado, A Coruña

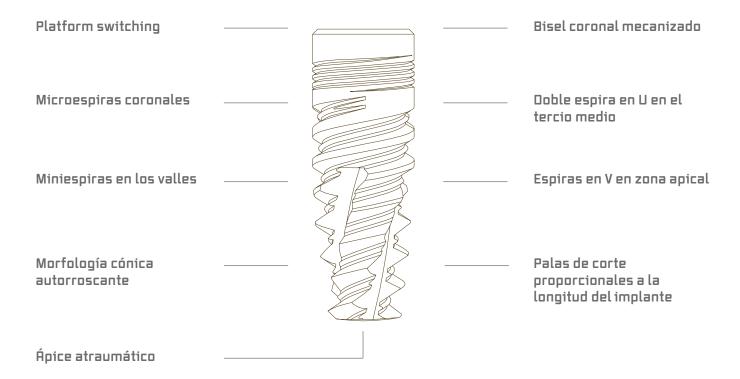
El implante M12 es un magnífico implante con muy buena introducción ósea y estabilidad primaria. A destacar su pilar transepitelial recto y antirrotatorio para restaurar unitarias. Un implante a considerar seriamente.

Dr. Cobián LLamas, Clínica Gonzalo Cobián LLamas, A Coruña

La doble espira autorroscante del implante Oxtein L6 ayuda a la osteointegración y aumenta la estabilidad primaria del implante.

Dr. Sancho Trigo Barcelona

El sistema de implantes Oxtein me permite solucionar todos los casos al poder elegir entre paredes paralelas y cónicas. La relación entre el diámetro final de las fresas y el implante es inmejorable. El servicio y la atención, es como siempre perfecta. Es de agradecer que el fabricante haga caso, en su diseño, a las necesidades de los profesionales.



Desarrollo de producto llevado a cabo por expertos en implantes

Detalles que garantizan comodidad

La exclusiva caja de Oxtein ha sido diseñada con minuciosidad para servir a tres propósitos principales:

Fácil manejo: el etiquetado está estructurado para aportar toda la información necesaria sobre los productos Oxtein de forma rápida y sencilla. La apertura del estuche, así como su estructura interior han sido cuidadosamente evaluadas para garantizar una extracción fácil y práctica del producto.

Para el profesional y para el paciente: cada implante Oxtein cuenta con un fascículo de instrucciones para el doctor y otro con recomendaciones post-operatorias para el paciente.

Garantía de por vida: dentro de la caja está contenida la tarjeta de garantía, icono del compromiso de Oxtein con sus clientes.

Investigación científica

Test de fatiga estática y dinámica bajo normativas ISO 14801:2008 /7500-1:2006.

Entidad: Lab. Cermet (Italia)

Investigador principal: Laboratorio certificado

Estado: Finalizado

Test comparativo de la superficie de los implantes Oxtein.

Entidad: Nobil Bioricerche (Italia)

Investigador principal: Laboratorio certificado

Estado: Finalizado

Estudio del comportamiento mecánico de la interacción entre implante dental Oxtein M12 y hueso (tipo I, II, III y IV) ante diferentes solicitaciones mecánicas.

Entidad: US. Universidad de Sevilla **Investigador principal:** Dr. Torres Lagares

Estado: Finalizado

Estudio fatiga aleatoria en diferentes tipos de implantes dentales de conexión interna Oxtein y en sus conexiones implantoprotésicas.

Entidad: URJC. Universidad Rey Juan Carlos I de Madrid

Investigador principal: Dr. Prados Frutos

Estado: Finalizado

Estudio in vitro para la valoración de la calidad de la adhesión celular y la osteogénesis de la superficie de titanio de los implantes Oxtein.

Entidad: UIC. Universidad Internacional Cataluña **Investigador principal:** Dra. Montse Mercadé

Estado: Finalizado

Estudio y análisis in vitro e in vivo sobre modelo animal del comportamiento de la superficie de los implantes Oxtein L6 y N35.

Entidad: US. Universidad de Sevilla **Investigador principal:** Dr. Torres Lagares

Estado: Finalizado

Estudio del rechazo en implantes dentales mediante técnicas numéricas y ensayos de fotoelasticidad.

Entidad: US. Universidad de Sevilla **Investigador principal:** Dr. Torres Lagares

Estado: Finalizado

Estudio sobre el comportamiento del hueso periimplantario debido a la transmisión de cargas con implantes de conexión cono morse en paciente con bruxismo.

Entidad: US. Universidad de Sevilla **Investigador principal:** Dr. Torres Lagares

Estado: Finalizado

Estudio estadístico a 4 años del comportamiento de diferentes morfologías de implantes sometidos a casuística multifactorial.

Entidad: US. Universidad de Sevilla **Investigador principal:** Dr. Torres Lagares

Estado: Finalizado

Influencia del tratamiento con plasma de argón en el crecimiento celular sobre discos de titanio.

Entidad: US. Universidad de Sevilla **Investigador principal:** Dr. Torres Lagares

Estado: Finalizado

Pérdida ósea marginal alrededor de implantes con conexiones cónicas internas y hexagonales internas: un estudio piloto aleatorizado de 12 meses.

Entidad: UG. Universidad de Granada **Investigador principal:** Dr. Pablo Galindo

Estado: Finalizado

Supervivencia de implantes Oxtein M12 en diferentes situaciones clínicas. Estudio orosoectivo a 2 años.

Entidad: Clínica Dentisalut (Barcelona)

Investigador principal: Dr. Juan Carlos Torres Segura

Estado: Finalizado

Estudio prospectivo clínico radiológico de la supervivencia y comparativo según su conexión, de implantes cortos Oxtein L6 y Oxtein L35 en sectores oosteriores.

Entidad: UCM. Universidad Complutense de Madrid

Investigador principal: Dr. López Quilés

Estado: En curso

Comité científico

Contamos con un grupo consultivo de expertos conformado por profesionales destacados en diversas áreas de la implantología.

Nuestro equipo de confianza aporta una amplia gama de experiencia, lo que garantiza que siempre tengamos un experto al cual recurrir con las preguntas más complejas sobre nuestros productos, líneas de investigación y formación.

Destacan entre las funciones de nuestro comité de expertos:

- Presentar sus opiniones y propuestas científicas para la introducción de mejoras y nuevas líneas de fabricación dentro de la gama de productos Oxtein.
- Hacer recomendaciones sobre las líneas de investigación que Oxtein debe explorar.
- Garantizar la coherencia y fiabilidad científica de todos los estudios clínicos desarrollados por Oxtein.
- Hacer recomendaciones y preparar las líneas de formación que Oxtein ofrece a sus clientes.

Máxima simplicidad

Los sistemas de implantes Oxtein han sido diseñados para cumplir con las expectativas del clínico más exigente.

- El sistema non-touch te ofrece máxima garantía en la captura del implante.
- 2. Un único set quirúrgico válido para 5 de nuestros sistemas de implantes.
- El diámetro de cada implante está representado con un código de colores que aparece tanto en el envase como en el propio transportador o cámara de titanio, y coincide con el color del tornillo de cierre incluido.
- 4. Presentamos las fresas en dos colores distintos para ayudarle a identificarlas más rápidamente: las fresas cónicas son doradas y las cilíndricas plateadas.
- 5. Nuestra carraca ofrece dos funcionalidades, ya que tiene una posición fija y otra dinamométrica.
- Un único destornillador hexagonal de 1.25 mm es válido para todos nuestros sistemas de implantes (excepto el sistema Oxtein M8).
- 7. El transportador de todos los sistemas ofrece tres funciones en una sola pieza: transporte del implante al lecho óseo, tránsfer de impresión para cubeta cerrada y pilar fresable/tallable para cementar.

Servicios

Ponemos a su disposición los siguientes servicios propios de una marca especializada en implantes.

- Garantía de por vida en todos nuestros sistemas de implantes.
- Nuestros asesores clínicos le ofrecen un continuo asesoramiento técnico personalizado.
- Rapidez en la resolución de todas sus consultas llamando al teléfono gratuito 900 393 939.
- 4. Inversión continua en estudios e investigación.
- Colaboraciones con Universidades y Sociedades Científicas y programas de formación especializada para el profesional.
- 6. Trazabilidad garantizada gracias al pasaporte implantológico incluido en cada implante.
- 7. Disponibilidad de tecnología CAD CAM. Consulte a nuestro especialista para mayor información.
- Ofrecemos el servicio de asesoramiento
 "Los especialistas en implantología responden" donde
 un grupo de expertos responderá todas sus dudas.
- Ofrecemos un módulo formativo opcional para el equipo auxiliar de nuestros clientes.
- Ponemos a disposición de nuestros clientes una web con toda la información de nuestros productos y material de apoyo para pacientes.
- 11. Asesoría y acompañamiento durante la primera cirugía con implantes Oxtein.

Sistema versátil

Nuestro equipo de ingenieros, en colaboración con líderes de opinión y conjuntamente con los resultados de los tests científicos, han logrado conseguir una línea más versátil e integral que permite dar una solución óptima a cualquier necesidad clínica.

- M Cono Morse
- 12 Dodecágono
- M Cono Morse
- 8 Octógono

Odontogramas

Unidad de medida: mm

Oxtein M12

SUPERIOR

■ (17)	■ (16)	■ (15)	■ (14)	■ (13)	(12)	(11)	■ (21)	(22)	■ (23)	■ (24)	■ (25)	■ (26)	■ (27)
Ø 5.0	Ø 5.0	Ø 4.5	Ø 4.0	Ø 4.0	Ø 3.5	Ø 4.0	Ø 4.0	Ø 3.5	Ø 4.0	Ø 4.0	Ø 4.5	Ø 5.0	Ø 5.0
8		A	A	A	8	8	A	8	A	8	8		
D	8	9	9	9	9	9	9	9	9	9	9	R	
■ (47)	■ (46)	■ (45)	■ (44)	■ (43)	(42)	■ (41)	(31)	(32)	(33)	(34)	(35)	■ (36)	■ (37)
Ø 5.0	Ø 5.0	Ø 4.5	Ø 4.0	Ø 4.0	Ø 3.5	Ø 4.0	Ø 4.0	Ø 3.5	Ø 4.0	Ø 4.0	Ø 4.5	Ø 5.0	Ø 5.0

INFERIOR

Oxtein M8

SUPERIOR

(17)	■ (16)	■ (15)	■ (14)	(13)	(12)	(11)	■ (21)	(22)	■ (23)	■ (24)	■ (25)	■ (26)	■ (27)
Ø 4.8	Ø 4.8	Ø 4.1	Ø 4.1	Ø 4.8	Ø 3.3	Ø 4.8	Ø 4.8	Ø 3.3	Ø 4.8	Ø 4.1	Ø 4.1	Ø 4.8	Ø 4.8
		A	A	8	8	A	A	8	8	8	8		M
	D	9	9	9	9	9	9	9	9	9	9	9	
■ (47)	■ (46)	■ (45)	■ (44)	(43)	(42)	(41)	(31)	(32)	(33)	■ (34)	■ (35)	■ (36)	(37)
Ø 4.8	Ø 4.8	Ø 4.1	Ø 4.1	Ø 4.1	Ø 3.3	Ø 3.3	Ø 3.3	Ø 3.3	Ø 4.1	Ø 4.1	Ø 4.5	Ø 4.8	Ø 4.8

IZQUIERDA

IZQUIERDA

IZQUIERDA

IZQUIERDA

Oxtein N6

SUPERIOR

■ (17)	■ (16)	■ (15)	■ (14)	(13)	(12)	■ (11)	■ (21)	(22)	■ (23)	■ (24)	■ (25)	■ (26)	■ (27)
Ø 5.0	Ø 5.0	Ø 4.0	Ø 4.0	Ø 4.0	Ø 3.5	Ø 4.0	Ø 4.0	Ø 3.5	Ø 4.0	Ø 4.0	Ø 4.0	Ø 5.0	Ø 5.0
W Constitution of the cons		A	A	8	A	A	A	8	8	8	8		
	R	9	9	9	9	9	9	9	9	9	9	9	
■ (47)	■ (46)	■ (45)	■ (44)	■ (43)	(42)	(41)	(31)	(32)	■ (33)	■ (34)	■ (35)	■ (36)	■ (37)
Ø 5.0	Ø 5.0	Ø 4.0	Ø 4.0	Ø 4.0	Ø 3.3	Ø 3.3	Ø 3.3	Ø 3.3	Ø 4.0	Ø 4.0	Ø 4.0	Ø 5.0	Ø 5.0

INFERIOR

Oxtein L6 y L35

SUPERIOR

	■ (17)	■ (16)	(15)	(14)	(13)	■ (12)	(11)	(21)	(22)	(23)	■ (24)	■ (25)	■ (26)	■ (27)
	Ø 5.0	Ø 5.0	Ø 4.25	Ø 4.25	Ø 4.25	Ø 3.75	Ø 4.25	Ø 4.25	Ø 3.75	Ø 4.25	Ø 4.25	Ø 4.25	Ø 5.0	Ø 5.0
			A	A	8	A	A	A	8	8	A	A		M
DER		Ø	9	9	9	9	9	9	9	9	9	9	9	R
	■ (47)	■ (46)	■ (45)	■ (44)	(43)	(42)	(41)	(31)	(32)	(33)	■ (34)	■ (35)	■ (36)	(37)
	Ø 5.0	Ø 5.0	Ø 4.25	Ø 3.75	Ø 4.25	Ø 3.3	Ø 3.3	Ø 3.3	Ø 3.3	Ø 4.25	Ø 3.75	Ø 4.25	Ø 5.0	Ø 5.0

INFERIOR

Oxtein M12

Contenido

Implante Oxtein M12	18
Secuencia de fresado	20
Sets quirúrgicos	22
Instrumental	24
Protocolo quirúrgico	32
Soluciones Protésicas	36
Pilares de cicatrización	46
Selección en la toma de impresión	48
Análogos	50
Bases mecanizadas y UCLAS	50
UCLAS de titanio	52
Pilares provisionales de peek	54
Soluciones atornilladas anguladas	56
Pilares tallables rectos	60
Pilares tallables angulados	62
Pilares de bola	64
Pilar LOCX	66
Pilares transepiteliales	70
Pilar gingival continuo	76
Soluciones CAD CAM	78
Scan body	78
Interfases	80
Tornillos	82

Oxtein M12

Especialmente diseñado para ser válido en todas las situaciones quirúrgicas con indicación preferente en alveolos post extracción y carga inmediata. Óptimo para realizar la técnica Platform Switching, ofreciendo una mejor adhesión de los tejidos blandos y respeto del ancho biológico.

Titanio

Grado IV cold worked.

Tratamiento superficial Oxigenna

"Surface argón system".

Conexión

Cono morse 11º doble hexágono interno.

Plataformas

Ø 2.82 mm Anodizada color azul. Ø 3.80 mm Anodizada color lila.

Tornillo de cierre

Incluido y codificado por color.

*La longitud máxima del tornillo retentivo admitido para la longitud de implante 8.5 mm es de 6.3 mm.

Platform switching

Respeto del ancho biológico.

Microespiras coronales

Seguridad en la respuesta biomecánica. Derivación homogénea de las fuerzas.

Miniespiras en los valles

Aumenta la superficie de contacto con el hueso. (BIC)

Espiras en V en zona apical

Mejora el anclaje en la zona apical

Bisel coronal mecanizado

Favorece la estética y adhesión de los tejidos blandos.

Morfología cónica autorroscante

Fiabilidad garantizada.

Doble espira en U en tercio medio

Mejor estabilidad primaria.

Palas de corte

Proporcionales a la longitud del implante para facilitar su inserción.

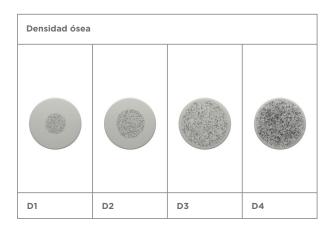
Ápice atraumático

Reduciendo el riesgo de lesión de las estructuras nobles.

Transportador 3 en 1

- 1. Transportador
- 2. Tránsfer de impresión para cubeta cerrada
- 3. Pilar tallable o fresable para cementar o cemento-atornillar con codificación de color identificativo del diámetro del implante

REFERENCIAS SIS	TEMA TRANSPORTA	DOR 3 EN 1		
Ø vs H	■ Ø 3.5 mm	■ Ø 4.0 mm	■ Ø 4.5 mm	■Ø 5.0 mm
H 8.5 mm	M123508T	M124008T	M124508T	M125008T
H 10.0 mm	M123510T	M124010T	M124510T	M125010T
H 11.5 mm	M123511T	M124011T	M124511T	M125011T
H 13.0 mm	M123513T	M124013T	M124513T	M125013T
H 14.5 mm	M123514T	M124014T	M124514T	M125014T
H 17.0 mm	M123517T	M124017T	_	_
Conexión	Ø 2.82 mm		Ø 3.80 mm	


Oxtein M12 Secuencia de fresado

Secuencia detallada paso a paso

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- **4** Fresa final \varnothing 3.1 mm para implante de \varnothing 3.5 mm a 750 r.p.m.
- **5** Macho de roscar Ø 3.5 mm. Más avellanadora cortical Ø 3.5 a 650 r.p.m. Utilizar solo en casos de hueso D1 v D2.
- **6** Fresa final Ø 3.5 para implante de Ø 4.0 a 650 r.p.m.
- 7 Macho de roscar Ø 4.0 mm. Más avellanadora cortical Ø 4.0 a 550 r.p.m. Utilizar solo en casos de hueso D1 y D2.

- 8 Fresa final \varnothing 4.0 mm para implante de \varnothing 4.5 mm a 550 r.p.m.
- **9** Macho de roscar Ø 4.5 mm. Más avellanadora cortical Ø 4.5 a 450 r.p.m. Utilizar solo en casos de hueso D1 y D2.
- **10** Fresa final \varnothing 4.5 mm para implante de \varnothing 5.0 mm a 450 r.p.m.
- 11 Macho de roscar Ø 5.0 mm. Más avellanadora cortical Ø 5.0 a 450 r.p.m. Utilizar solo en casos de hueso D1 y D2.

Recomendaciones importantes

Utilizar irrigación abundante.

No sobrepasar los 35-45 Ncm, en la inserción del implante. Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso. En huesos de densidad D1 y D2 se recomienda pasar la fresa avellanadora de cortical aparte del Macho de roscar.

*Macho de roscar

Se recomienda el uso de machos de roscar para la colocación de implantes cónicos en huesos D1 y D2. Disponibles en conexión a llave carraca dinamométrica y a C/A.

Secuencia para implante de Ø 3.5 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- **4** Fresa final Ø 3.1 mm para implante de Ø 3.5 mm a 750 r.p.m.
- **5** Macho de roscar Ø 3.5 mm. Más avellanadora cortical Ø 3.5 a 650 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5
3.5 mm	D1 - D2	•	•	•	•	•
	D3 - D4	•	•	•	•	

Secuencia para implante de Ø 4.0 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- **6** Fresa final Ø 3.5 mm para implante de Ø 4.0 mm a 650 r.p.m.
- 7 Macho de roscar Ø 4.0 mm. Más avellanadora cortical Ø 4.0 a 550 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7
4.0 mm	D1 - D2	•	•	•	•		•	•
	D3 - D4	•	•	•	•		•	

Secuencia para implante de Ø 4.5 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- 6 Fresa Ø 3.5 mm a 650 r.p.m.
- **8** Fresa final Ø 4.0 mm para implante de Ø 4.5 mm a 550 r.p.m.
- **9** Macho de roscar Ø 4.5 mm. Más avellanadora cortical Ø 4.5 a 450 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7	8	9
4.5 mm	D1 - D2	•	•	•	•		•		•	•
	D3 - D4	•	•	•	•		•		•	

Secuencia para implante de Ø 5.0 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- **6** Fresa Ø 3.5 mm a 650 r.p.m.
- 8 Fresa Ø 4.0 mm a 550 r.p.m.
- **10** Fresa final Ø 4.5 mm para implante de Ø 5.0 mm a 450 r.p.m.
- **11** Macho de roscar Ø 5.0 mm. Más avellanadora cortical Ø 5.0 a 450 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7	8	9	10	11
5.0 mm	D1 - D2	•	•	•	•		•		•			•
	D3 - D4	•	•	•	•		•		•		•	

Oxtein M12 Sets quirúrgicos

Set plus

YUCRD	Llave carraca fija y dinamométrica de titanio
YULLA	Llave acodada de extremo abierto
YUMED	Medidor universal
IP2253 + YUDCRC	Mango atornillador + Atornillador 1.25 corto conexión carraca
YUDCRL	Atornillador 1.25 largo conexión carraca
YUDCA	Atornillador 1.25 conexión C/A
YUAM	Adaptador manual
YUACRL	Adaptador carraca largo
YUACAC	Adaptador C/A corto
YUACAL	Adaptador C/A largo
IP2255	Prolongador / Extensor
YUFRL	Fresa lanceolada
YNFR23L	Fresa cónica piloto larga con tope Ø 2.35 mm
YNFR27L	Fresa cónica larga con tope Ø 2.7 mm
YNFR31L	Fresa cónica larga con tope Ø 3.1 mm
YNFR35L	Fresa cónica larga con tope Ø 3.5 mm
YNFR40L	Fresa cónica larga con tope Ø 4.0 mm
YNFR45L	Fresa cónica larga con tope Ø 4.5 mm
YLFR23L	Fresa cilíndrica piloto larga con tope Ø 2.3 mm
YLFR27L	Fresa cilíndrica larga con tope Ø 2.75 mm
YLFR31L	Fresa cilíndrica larga con tope Ø 3.1 mm

YLFR36L	Fresa cilíndrica larga con tope Ø 3.6 mm			
YLFR41L	Fresa cilíndrica larga con tope Ø 4.1 mm			
YLFR44L	Fresa cilíndrica larga con tope Ø 4.4 mm			
YLFR48L	Fresa cilíndrica larga HD Ø 4.8 mm			
Y1MR35C	Macho de roscar carraca Ø 3.5 mm para M12			
Y1MR40C	Macho de roscar carraca Ø 4.0 mm para M12			
Y1MR45C	Macho de roscar carraca Ø 4.5 mm para M12			
Y1MR50C	Macho de roscar carraca Ø 5.0 mm para M12			
YNMR35	Macho de roscar carraca Ø 3.5 mm para N6			
YNMR40	Macho de roscar carraca Ø 4.0 mm para N6			
YNMR50	Macho de roscar carraca Ø 5.0 mm para N6			
Y1DRMQC	Driver mecánico directo a implante M12 corto Ø 2.82 mm			
Y1DRMLC	Driver mecánico directo a implante M12 corto Ø 3.80 mm			
Y3DR33	Driver mecánico directo a implante L6 2.3 x 1.0			
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7x0.7			
Y56DR	Driver mecánico directo a implante L35			
YUTFRH60	Tope H 6 para fresas			
YUTFRH85	Tope H 8.5 para fresas			
YUTFRH10	Tope H 10 para fresas			
YUTFRH11	Tope H 11.5 para fresas			
YUTFRH13	Tope H 13 para fresas			
YUTFRH14	Tope H 14.5 para fresas			

Set basic

YNSQB - Set basic N incluye:				
YUAM	Adaptador manual			
YUACRL	Adaptador carraca largo			
YUACAC	Adaptador C/A corto			
YUDML	Atornillador largo manual fijo 1.25 mm			
IP2255	Prolongador / Extensor			
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7 x 0.7			
Y56DR	Driver mecánico directo a implante para L35			
YNMP2327	Medidor prof. / paralelizador Ø 2.3 mm / 2.7 mm			
YNMP3135	Medidor prof. / paralelizador Ø 3.1 mm / 3.5 mm			

Y1DRMQC	Driver mecánico directo a implante M12 corto Ø 2.82 mm
Y1DRMLC	Driver mecánico directo a implante M12 corto Ø 3.80 mm
YUFRL	Fresa lanceolada
YNFR23C	Fresa cónica piloto corta de Ø 2.3 mm
YNFR27C	Fresa cónica corta Ø 2.7 mm
YNFR31C	Fresa cónica corta Ø 3.1 mm
YNFR35C	Fresa cónica corta Ø 3.5 mm
YNFR40C	Fresa cónica corta Ø 4.0 mm
YNFR45C	Fresa cónica corta Ø 4.5 mm

Importante

Se recomienda el uso de machos de roscar para la colocación de implantes cónicos en huesos D1 y D2. (No incluidos en el set basic).

Longitud máxima de colocación de implante con las fresas incluidas en el set basic: 13.0 mm.

Las fresas de longitud 17 mm para los implantes Oxtein M12, se deben adquirir aparte. (No se incluyen en los sets)

Oxtein M12 Instrumental

Fresa lanceolada Fresa de 17 mm

Fresa corta

FRESA PILOTO CORTA CÓNICA	FRESA QUIRÚRGICA CORTA CÓNICA						
Ø 2.35 mm	Ø 2.7 mm	Ø 3.1 mm	Ø 3.5 mm	Ø 4.0 mm	Ø 4.5 mm		
YNFR23C	YNFR27C	YNFR31C	YNFR35C	YNFR40C	YNFR45C		

Fresa larga

FRESA PILOTO LARGA CÓNICA	FRESA QUIRÚRGICA LARGA CÓNICA					
Ø 2.35 mm	Ø 2.7 mm	Ø 3.1 mm	Ø 3.5 mm	Ø 4.0 mm	Ø 4.5 mm	
YNFR23L	YNFR27L	YNFR31L	YNFR35L	YNFR40L	YNFR45L	

Tope fresas largas

H 6.0 mm	H 8.5 mm	H 10.0 mm	H 11.5 mm	H 13.0 mm	H 14.5 mm
YUTFRH60	YUTFRH85	YUTFRH10	YUTFRH11	YUTFRH13	YUTFRH14

Oxtein M12 Instrumental

Bisturí circular de conexión contra ángulo

Ø 3.3 mm	Ø 3.5 mm	Ø 3.75 mm	Ø 4.0 mm	Ø 4.25 mm	Ø 4.5 mm	Ø 4.8 mm	Ø 5.0 mm
IP5277A	IP5286A	IP5279A	IP5280A	IP5282A	IP5285A	IP5287A	IP5283A
500	0.30	9760		2770	0.4.0	0.48	Disco

Macho de roscar

CARRACA			MECÁNICO				
Ø 3.5 mm	Ø 4.0 mm	Ø 4.5 mm	Ø 5.0 mm	Ø 3.5 mm	Ø 4.0 mm	Ø 4.5 mm	Ø 5.0 mm
Y1MR35C	Y1MR40C	Y1MR45C	Y1MR50C	Y1MR35M	Y1MR40M	Y1MR45M	Y1MR50M

Avellanadoras corticales

MECÁNICO					
Ø 3.5 mm	Ø 4.0 mm	Ø 4.5 mm	Ø 5.0 mm		
YNFR35HD	YNFR40HD	YNFR45HD	YNFR50HD		

Medidor de profundidad y pin de paralelismo

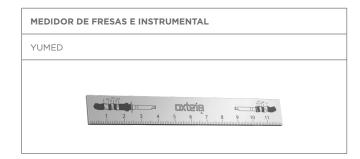
Ø 2.3 y Ø 2.7 mm	Ø 3.1 y Ø 3.5 mm
YNMP2327	YNMP3135

Oxtein M12 Instrumental

Driver

PLATAFORMA Ø 2.82 mm			PLATAFORMA Ø 3.80 mm				
Mecánico	Mecánico Carraca		Mecánico	Mecánico Carraca			
Corto	Largo	Corto	Largo	Corto	Largo	Corto	Largo
Y1DRMQC	Y1DRMQL	Y1DRCQC	Y1DRCQL	Y1DRMLC	Y1DRMLL	Y1DRCLC	Y1DRCLL

Prolongador de fresas


Adaptador

MANUAL	CARRACA CORTO	CARRACA LARGO	CONTRA-ÁNGULO CORTO	CONTRA-ÁNGULO LARGO
YUAM	YUACRC	YUACRL	YUACAC	YUACAL

Llaves

LLAVE DE EXTREMO ABIERTO	LLAVE CARRACA DE TITANIO FIJA Y DINAMOMÉTRICA (20 a 55 Ncm.)
YULLA	YUCRD
oxteië	

Medidor

Punta atornillador

MANUAL INTERCAMBIABLE CONEXIÓN CARRACA			MANUAL FIJO		MECANICO
Larga	Media	Corta	Larga	Corta	Media
YUDCRL	YUDCRM	YUDCRC	YUDML	YUDMC	YUDCA

Oxtein M12 Instrumental

Juntas para instrumental 10 unidades

Extractor prótesis

Bone mill

Ø 3.5 - 4.0 mm		Ø 4.5 - 5.0 mm		
Recto y divergente		Recto	Recto y divergente	
Y1BMQ	Y1BMQAN	Y1BML	Y1BMLAN	

The Perfect Match

Conexiones precisas

Dado que una de nuestras principales misiones es la de de pensar y ofrecer nuevas soluciones protésicas, hemos incorporado en nuestra familia de pilares transipiteliales rectos, torretas antirrotatorias para casos unitarios.

Las tenemos disponibles en los siguientes materiales: En Peek para restauraciones provisionales. En Plexi Glass, para la realización de un mejor colado. En Titanio para quienes deseen un inmejorable ajuste.

Importante

Éstas solo están disponibles para pilares transipiteliales rectos.

Oxtein M12Protocolo quirúrgico

Preparación de los tejidos blandos y de la zona cortical

1 Con bisturí circular

Se inicia la secuencia quirúrgica con el bisturí circular correspondiente al Ø de implante planificado a una velocidad de giro de 350 r.p.m.

Una vez realizado el corte, se extrae el tejido blando sobrante mediante periostotomo y/o pinza.

Se recomienda el uso de una férula quirúrgica para continuar con la osteotomía.

² Con incisión de colgajo

Se inicia la incisión levantado el colgajo con la ayuda de separadores gingivales.

Se recomienda el uso de una férula quirúrgica una vez haya acceso a la cresta ósea.

En casos de encontrar crestas óseas estrechas, se aconseja regularizarla para aumentar la anchura vestíbulo-lingual o palatina.

³ Secuencia quirúrgica inicial con fresa lanceolada

Se inicia la secuencia con la fresa lanceolada, con una velocidad de giro de 850 r.p.m, hasta traspasar la cortical ósea centralizando el eje para las siguientes osteotomías.

Se insertará por la guía de la férula quirúrgica en caso de usarse ésta.

Importante

Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso.

Es necesario abundante irrigación en todas las osteotomías y procesos hasta la inserción del implante.

Para una mayor seguridad se recomienda el uso de los topes de fresas.

Preparación del lecho óseo

- Después de haber finalizado la preparación de la zona gingival y cortical, se procede a realizar la osteotomía con la fresa piloto de Ø 2.35 mm a una velocidad de giro de 850 r.p.m hasta la longitud planificada.
- 2 A continuación, se procede a realizar la siguiente osteotomía con la fresa intermedia de Ø 2.7 mm a una velocidad de giro de 750 r.p.m profundizando hasta la longitud planificada.

Secuencia final

- 3 Longitud de fresado para implante Oxtein M12 Ø 3.5 mm Después de haber concluido la fase anterior, se procede a realizar la osteotomía final para el implante Oxtein M12 Ø 3.5 se realiza con la fresa de Ø 3.1 mm, siguiendo con la velocidad de giro de 750 r.p.m profundizando hasta la longitud planificada.
- 4 Longitud de fresado para implante Oxtein M12 Ø 4.0 mm La osteotomía final para el implante Oxtein M12 Ø 4.0 mm se realiza con la fresa de Ø 3.5 mm, a una velocidad de giro de 650 r.p.m hasta la longitud planificada.
- 5 **Longitud de fresado para implante Oxtein M12 Ø 4.5 mm**La osteotomía final para el implante Oxtein M12 Ø 4.5 mm
 se realiza con la fresa de Ø 4.0 mm, a una velocidad
 de giro de 550 r.p.m hasta la longitud planificada.
- 6 Longitud de fresado para implante Oxtein M12 Ø 5.0 mm La osteotomía final para el implante Oxtein M12 Ø 5.0 mm se realiza con la fresa de Ø 4.5 mm, a una velocidad de giro de 450 r.p.m hasta la longitud planificada.

* Puntos importantes a tener en cuenta

Después de haber realizado las primeras osteotomías con las fresas correspondientes, se debe insertar el medidor de profundidad/paralelizador para comprobar la longitud de fresado y paralelismo obtenido. Si se detectan calidades óseas con D1 y D2, en zonas mandibulares y maxilares anteriores y corticales gruesas, se debe conformar el lecho óseo mediante el macho de roscar correspondiente al Ø de implante a colocar. Disponibles con conexión a llave carraca y mecánico.

Oxtein M12 Protocolo quirúrgico

Proceso de inserción del implante Oxtein M12 con transportador

- 1 Abrir la caja del implante con guantes de nitrilo por la zona troquelada.
- 2 Extraiga la bandeja en la que está depositado el blíster del implante.
- 3 Posteriormente, en condiciones estériles, desprecintar el blíster por la esquina no redondeada hasta liberar el vial de plástico con el tapón de titanio que hay en su interior.
- **4** Depositar el vial en campo estéril sin tocarlo con los guantes.
- 5 Seguidamente retirar el tapón de titanio que va a presión. (No desecharlo ya que incluye el tornillo de cierre).
- **6** Extraer axialmente del interior del vial el soporte plástico dónde se encuentra el implante con su transportador.
- 7 No tocar el implante con los guantes para evitar su contaminación y sujetando firmemente el soporte plástico, acoplar los hexágonos del transportador y del adaptador con movimiento rotacional y axial hasta oír un clic.
- 8 Una vez conexionado, extraer el implante de su soporte con un ligero movimiento ascendente.
- **9** Finalmente llevar el implante a boca para iniciar su inserción.

Importante

Antes de proceder a realizar la inserción del implante, leer detenidamente las instrucciones de uso.

No sobrepasar los 45 Ncm en la inserción del implante.

Proceso de inserción del implante Oxtein M12 con driver directo

- 1 Abrir la caja del implante con guantes de nitrilo por la zona troquelada.
- 2 Extraiga la bandeja en la que está depositado el blíster del implante.
- 3 Posteriormente, en condiciones estériles, desprecintar el blíster por la esquina no redondeada hasta liberar el vial de plástico con el tapón de titanio que hay en su interior.
- **4** Depositar el vial en campo estéril sin tocarlo con los guantes.
- 5 Seguidamente retirar el tapón de titanio que va a presión. (No desecharlo ya que incluye el tornillo de cierre). Mantener el vial recto para evitar que se caiga el implante de su cámara de alojamiento.
- 6 Posicionar el driver axialmente al implante y realizar el ensamblaje entre ambos, girando el adaptador de contrángulo hasta que se inserte y se note la presión de la junta tórica hasta oír un clic.
- 7 Una vez conexionado, extraer el implante en sentido axial ascendente.
- **8** Finalmente llevar el implante a boca para iniciar su inserción.

Importante

Antes de proceder a realizar la inserción del implante leer detenidamente las instrucciones de uso.

No sobrepasar los 45 Ncm en la inserción del implante.

Nuevos pilares anatómicos Oxtein M12 Un concepto estético

Todos los aditamentos protésicos del sistema Oxtein M12 están diseñados con una geometría anatómica radial cóncava para conseguir una mejor adaptación de los tejidos blandos y obtener un óptimo resultado estético.

La familia protésica de los implantes Oxtein M12 viene identificada con marcado láser indicando su longitud y diámetro.

Versatilidad en la preparación de los tejidos de blandos

Los pilares de cicatrización están coloreados identificando su diámetro, lo que facilita su elección para la creación de un óptimo túnel mucoso.

- Color rosa claro Ø 4.0 mm
- Color amarillo claro Ø 5.0 mm
- Color azul claro Ø 6.0 mm

Fácil identificación por color

En el resto de aditamentos, su color identifica el tipo de rehabilitación.

Color azul aditamentos para atornillar.

Aditamentos calcinables, con base mecanizada o de titanio, todos con tornillo en color azul.

Color amarillo aditamentos para cementar.

Aditamentos rectos y angulados todos con su tornillo en color amarillo.

Color fucsia aditamentos transepiteliales.

Todos ellos con tornillo, tanto rectos como angulados, así como sus tapones en color fucsia.

Plataforma 2.82 mm
Plataforma 3.80 mm

Análogo

	TRANSEPITELIAL		PILAR LOCX	3D		
41P28	MUU4R	MUU4AR	9U4	41P283D	MUU4R3D (Transep)	MUU4AR3D (Transep)
41P38				41P383D	(Hullsep)	(Transep)

Tránsfers de impresión

Pilares de cicatrización

Ø 4.0 mm	Ø 5.0 mm	Ø 6.0 mm	TRANSEPITELIAL
21Q04H3	21Q05H3	21Q06H3	MU1PLN
21Q04H5	21Q05H5	21Q06H5	
21Q04H7	21Q05H7	21Q06H7	MU1CCV
21LO4H3	21L05H3	21L06H3	
21LO4H5	21L05H5	21L06H5	MU1CVX
21LO4H7	21L05H7	21L06H7	
Ť	Ŷ	Ŷ	

Unitaria

ATORNILLAI	DA							ATOR
UCLA			Provisional		Transepitelial	Transepitelial		Adita
Calcinable	Base mecanizada	Titanio	Peek Ø 4.0 mm	Peek Ø 5.5 mm	Recto estándar	Recto anatómico		Calcir
51QCAR	51QBH1AR	51QTAR	PK1Q40AR	PK1Q55AR	MU1QH1	MU1QH1A		MU1C.
	51QBH2AR				MU1QH2	MU1QH2A		
	51QBH3AR				MU1QH3	MU1QH3A		
					MU1QH4	MU1QH4A	4.8	
51LCAR	51LBH1AR	51LTAR	PK1L40AR	PK1L55AR	MU1LH1	MU1LH1A	4.0	
	51LBH2AR				MU1LH2	MU1LH2A		
	51LBH3AR				MU1LH3	MU1LH3A		
					MU1LH4	MU1LH4A		
-		C CENTRAL OF THE PARTY OF THE P		1		*		
	\bigcirc	\bigcirc						

	ATORNILLAI	DA						
	Aditamentos transepitelial							
	Calcinable	Titanio	Provisional Peek					
3	MUICAR	MUITAR	MUIEPKAR					
		81						
		\bigcirc	\bigcirc					

Unitaria Atornillada Angulada M12

LLAVE	
IP01001	

TORNILLOS		
IPO2025 (Tor. Clínica)	IP02026 (Tor. Lab.)	Î
IPO2009 (Tor. Clínica)	IP02010 (Tor. Lab.)	

Plataforma 2.82 mm

Plataforma 3.80 mm

Unitaria Atornillada Angulada M12

CILÍNDRO CALCINABLE					
10°	20º	30º			
IP07101	IP07099	IP07097			
IP07134	IP07132	IP07130			
-	/	/			
\bigcirc	\bigcirc	\Diamond			


(SOBRECO	CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)			CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
10°	20º	30°	10º	20º	30º		
IP04088	IP04087	IP04086	IP04061	IP04060	IP04059		
	1				/		
	Base Cromo C	obalto		Base TI			
	IP03070			IP03068			
	7			*			

Unitaria / Múltiple

			Pilar angula	ado				
H1	H2	Н3	15° H2	15° H3	15° H4	25° H2	25° H3	25° H4
61QH1 (61QH2	61QH3	71Q15H2	71Q15H3	71Q15H4	71Q25H2	71Q25H3	71Q25H4
61LH1 (61LH2	61LH3	71L15H2	71L15H3	71L15H4	71L25H2	71L25H3	71L25H4
T H10	7 L H2.0) F H30						

Múltiple

Múltiple Atornillada Angulada M12

TORNILLOS		
IPO2025 (Tor. Clínica)	IP02026 (Tor. Lab.)	
IP02009 (Tor. Clínica)	IP02010 (Tor. Lab.)	

Plataforma 2.82 mm
Plataforma 3.80 mm

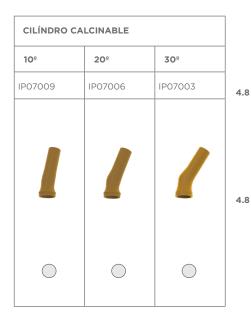
Múltiple Atornillada Angulada M12

CILÍNDRO CALCINABLE						
10°	20º	30 ²				
IP07102	IP07100	IP07098				
IP07135	P07135 IP07133					
	/	/				
	0	0				

	A CALCINABLE DLADO O COL <i>i</i> RA)			CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
10º	20º	30º	10º	20º	30º		
IP04088	IP04087	IP04086	IP04061	IP04060	IP04059		
	Base Cromo C	ohalto		Base TI			
				Base TI			
	IP03071			IP03069			

Múltiple

ATORNILLA	DA		
H 1 mm	H 2 mm	H 3 mm	H 4 mm
Transepiteli	al recto están	dar	
MU1QH1	MU1QH2	MU1QH3	MU1QH4
MU1LH1	MU1LH2	MU1LH3	MU1LH4
•	•		
Transepiteli	al recto anató	mico	
MU1QH1A	MU1QH2A	MU1QH3A	MU1QH4A
MU1LH1A	MU1LH2A	MU1LH3A	MU1LH4A
•	•		


ATORNILLADA									
17° H3	17° H5	30° H3	30° H5						
Transepitelial angulado estándar									
MU1Q17H3	MU1Q17H5	MU1Q30H3	MU1Q30H5						
MU1L17H3	MU1L17H5	MU1L30H3	MU1L30H5						
		\(\)							
Transepitelial an	gulado anatómico								
MU1Q173A	MU1Q175A	MU1Q303A	MU1Q305A						
MU1L173A	MU1L175A	MU1L303A	MU1L305A						
91			\Diamond						

	ATORNILLADA	ATORNILLADA						
	Aditamentos transepiteliales							
	Calcinable	Titanio	Provisional Peek					
4.8	MU1CR	MUITR	MUIEPKR					
	81	81						

Múltiple Atornillada para Transepitelial M12

		CALCINABLE .ADO O COLAD A)	0 +	CHIMENEA C	CALCINABLE CEMENTADO)			
	10º	20º	30º	10º	20º	30º		
3	IP04010	IP04006	IP04002	IP04012	IP04008	IP04004		
		1	1		1	1		
	В	ase Cromo Cob	alto	Base TI				
3		IP03008		IP03009				

Sobredentadura

PILAR D	E BOLA		RETENCIONES				
81QH1	81QH25	81QH4	8RAM	8ROR	8RCM	8RTF	
81LH1	81LH25	81LH4					
			0				

PILAR LO	сх			
91H05Q	91H2Q	91H3Q	91H4Q	91H5Q
91H05L	91H2L	91H3L	91H4L	91H5L
	Name of the second			, anno

RETENCION	ES								
			Divergen ha	sta 10°			Divergen ha	sta 20°	
Set (2 Uds)	Espaciador (4 Uds.)	Capsula metálica (4 Uds.)	Ret. Negra 0 Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9ROOL	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
	0								

CAD CAM

SCAN BOD	Υ		INTERFASE						
Longitud 8.5 mm	Longitud 10 mm	d Transepitelial					plante	A transepite	lial
		Longitud 8.5	mm	Longitud 10	mm				
CL3540I	CL3540	CLMURI	CLMUARI	CLMUR	CLMUAR	CIM12QR	CIM12QAR	CIMUR	CIMUAR
CL4550I	CL4550					CIM12LR	CIM12LAR		
T	T								
			\bigcirc						\bigcirc

Pilar de cicatrización

Geometría anatómica para un mejor moldeado de encía.

Las distintas longitudes y diámetros que ofrece el sistema de implantes Oxtein M12 en pilares de cicatrización, están cuidadosamente diseñados para lograr un óptimo moldeado de los tejidos blandos gracias a su geometría específica anatómica radial cóncava, permitiendo obtener así el mejor resultado estético.

Características generales

Una vez finalizada la fase de reparación de los tejidos de sostén, debe existir una vía mucosa o túnel mucoso de conexión del implante a la estructura secundaria o prótesis. El pilar de cicatrización se encarga de generar ese túnel mucoso, y para ello es colocado roscado sobre el implante.

Para su fácil identificación sus medidas vienen señaladas con marcado láser, y distinguidos claramente por código de color según su diámetro.

Materia

Titanio grado V.

Destornillador

Hexagonal de 1.25 mm.

Sugerencia de utilización

Torque máximo de apriete 10 Ncm. Un solo uso.

Pilar cicatrización anatómico

Ø 4.0 mm			Ø 5.0 mm			Ø 6.0 mm		
Н3	Н5	H7	Н3	Н5	H7	Н3	H5	H7
21Q04H3	21Q04H5	21Q04H7	21Q05H3	21Q05H5	21Q05H7	21Q06H3	21Q06H5	21Q06H7

Para Ø 4.5 mm / Ø 5.0 mm									
Ø 4.0 mm			Ø 5.0 mm	Ø 5.0 mm			Ø 6.0 mm		
Н3	Н5	Н7	Н3	Н5	H7	Н3	Н5	H7	
21LO4H3	21L04H5	21L04H7	21L05H3	21L05H5	21L05H7	21L06H3	21L06H5	21L06H7	
				in the second		Table 1	100	MOON!	

Selección en la toma de impresión

Características generales

Disponibilidad para la técnica de cubeta abierta y cerrada.

Los tránsfers de impresión se suministran con su respectivo tornillo de retención: Para cubeta abierta tornillo largo. Para la cubeta cerrada tornillo corto.

Finalidad

Aditamento que, conexionado a la porción superior o coronal del implante en el interior de la cavidad bucal y fijado mediante un tornillo pasante de rosca, sirve para realizar la transferencia de la posición del implante en el medio biológico a un modelo de trabajo de laboratorio. Esto se consigue gracias al empleo de materiales de impresión que, colocados en una cubeta apropiada, endurecen dentro de la cavidad bucal. Una vez retirada la cubeta de la boca, unida a los tránsfers de impresión, se acoplan los análogos ayudándonos del tornillo de retención y posteriormente se realiza el vaciado en un material de escayola-yeso para obtener el modelo positivo donde quedará la réplica en la posición original que tiene el implante en boca.

Para cubeta cerrada

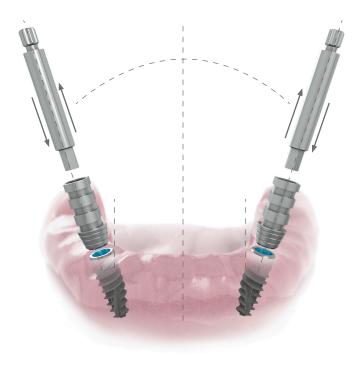
En el caso de la técnica de cubeta cerrada los tornillos de retención de los tránsfers no quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado habrá que retirar los tránsfers que se han quedado en boca y reposicionarlos manualmente en su hueco de origen dentro de la cubeta cerrada.

Para cubeta abierta

En el caso de la técnica de cubeta abierta los tornillos de retención de los tránsfers sí quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado los tránsfers quedarán atrapados en la cubeta por lo que no habrá que reposicionarlos manualmente.

Material Titanio grado V.

Destornillador Hexagonal de 1.25 mm.


Torque máximo de apriete 10 Ncm.

Sugerencia de utilización Un solo uso.

TRÁNSFER CUBETA	TRÁNSFER CUBETA CERRADA C/T					
Ø 2.82 mm	Ø 3.80 mm					
31QCC	31LCC					

TRÁNSFER CUBETA ABIERTA C/T						
Ø 2.82 mm	Ø 3.80 mm					
31QCA	31LCA					

Una impresión perfecta en implantes divergentes

Finalidad

En el caso de divergencia severa entre implantes o entre implantes y dientes adyacentes, es recomendable utilizar la técnica de cubeta abierta con el transfer de impresión de tres piezas con el fin de evitar deformación en la silicona en el momento de su extracción.

Tránsfer de impresión 3 pz.

Una óptima solución para realizar la toma de impresión en implantes divergentes de conexión interna sin dañar ni forzar la silicona. Gracias a su casquillo interno removible se puede extraer el cuerpo del tránsfer de impresión adherido a la cubeta sin ningún tipo de esfuerzo.

Análogos

Finalidad

Aditamento destinado por un lado a suplir y reproducir la posición del implante en boca sobre un modelo de trabajo una vez realizada la transferencia mediante una toma de impresión, y por otro a servir de modelo de conexión para la construcción en el laboratorio de la estructura de prótesis destinada a sustituir la(s) pieza(s) perdida(s).

Bases mecanizadas y UCLAS

Finalidad

Ambos aditamentos actúan como elemento directo al implante que, una vez moldeado y colado, sirve como estructura final del diente.

La utilización de las bases mecanizadas, garantizan un óptimo ajuste con la conexión del implante evitando posibles alteraciones procedentes del colado.
Sus distintas alturas y geometría anatómica en la zona de conexión, permite una mejor adaptación de los tejidos blandos ofreciendo al paciente una óptima estética.

Contenido

Calcinable con base mecanizada de cromo cobalto más tornillo retentivo de clínica.

Disponible también en Plexi Glass. Para plataforma Ø 2.82 mm: 51QCAR 51QCR Para plataforma Ø 3.80 mm: 51LCAR 51I CR

PLATAFORMA 3.80 mm
Ø 4.5 mm - 5.0 mm
41P38

Material

Torreta: Plexi Glass.

Base mecanizada

Cromo cobalto.

Tornillo

Titanio grado V. **Plataformas**

2.82 mm / 3.80 mm. **Tipo de restauración**

Atornillada. Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 2.82 mm entre 20 y 25 Ncm como máximo. En plataforma 3.80 mm entre 30 y 35 Ncm como máximo.

Indicaciones

Base mecanizada antirrotatoria: indicada para coronas fijas atornilladas unitarias. Base mecanizada rotatoria: indicada para restauraciones fijas múltiples.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio. La altura de la mucosa debe ser superior a la altura de la base mecanizada del pilar.

Disponibles en distintas alturas: 1.0 mm, 2.0 mm y 3.0 mm.

UCLA base mecanizada cromo cobalto

PLATAFORMA Ø 2.82 mm					PLATAFORMA Ø 3.80 mm						
Ø 3.5 - 4.0 mm					Ø 4.5 - 5.0 mm						
H1	H1 H2 H3			H1 H2			Н3				
51QBH1R	51QBH1AR	51QBH2R	51QBH2AR	51QBH3R	51QBH3AR	51LBH1R	51LBH1AR	51LBH2R	51LBH2AR	51LBH3R	51LBH3AR
V		V	V	V	V	V	U	V	D	V	V
	\bigcirc										

UCLAS de titanio

Finalidad

Actúa como elemento directo al implante. Una vez fresada su parte superior se encera para realizar el colado. Posteriormente se cementa al pilar y se atornilla como estructura final del diente. Su geometría anatómica permite una mejor adaptación de los tejidos blandos ofreciendo al paciente una óptima estética.

Contenido

Pilar UCLA de titanio más tornillo retentivo de clínica.

Indicaciones

Antirrotatorio:

indicado para coronas fijas atornilladas unitarias.

Rotatorio:

indicado para restauraciones fijas múltiples.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada.

Material

Pilar y tornillo: Titanio grado V.

Plataformas

2.82 mm / 3.80 mm.

Tipo de restauración

Atornillada. Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 2.82 mm entre 20 y 25 Ncm como máximo. En plataforma 3.80 mm entre 30 y 35 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio.

Pilar UCLA titanio

PLATAFORMA	Ø 2.82 mm	PLATAFORMA Ø 3.80 mm			
Ø 3.5 - 4.0 mm		Ø 4.5 - 5.0 mm			
51QTR	1QTR 51QTAR		51LTAR		
			SILIAR		

Pilares provisionales de peek

Finalidad

Actúan como elemento temporal directo al implante. Una vez moldeada su parte superior sirve como estructura provisional del diente. Disponible en dos diámetros distintos para una mayor versatilidad (4,0mm y 5,5mm). Su geometría anatómica está diseñada para una mejor adaptación de los tejidos blandos y así obtener una mejor estética cuando se coloque el aditamento definitivo seleccionado.

Contenido

Pilar provisional de peek más tornillo retentivo de clínica.

Indicaciones

Pilar provisional de peek antirrotatorio: indicado para restauraciones fijas atornilladas unitarias.

Pilar provisional de peek rotatorio: indicado para restauraciones fijas múltiples.

Ventajas en la utilización

Los pilares provisionales nos dan a conocer si el tratamiento se ajustará a las necesidades del paciente, estableciendo un factor aproximado de la futura rehabilitación a realizar.

Material

Pilar: Peek. Tornillo: Titanio grado V.

Plataformas

2.82 mm / 3.80 mm.

Tipo de restauración

Provisional atornillada.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

10 Ncm

Contraindicaciones de uso

En aquellos casos en los que se pueda ver comprometida la planificación de la carga/estética inmediata.

Nota

No utilizar durante un tiempo superior de 90 días.

Pilares provisionales de peek

PLATAFORMA Ø 2.82 mm				PLATAFORMA Ø 3.80 mm				
Ø 3.5 - 4.0 mm				Ø 4.5 - 5.0 mm				
Ø 4.0 mm	Ø 5.5 mm	Ø 4.0 mm	Ø 5.5 mm	Ø 4.0 mm	Ø 5.5 mm	Ø 4.0 mm	Ø 5.5 mm	
PK1Q40R	PK1Q55R	PK1Q40AR	PK1Q55AR	PK1L40R	PK1L55R	PK1L40AR	PK1L55AR	

Soluciones atornilladas anguladas

Finalidad

La solución BHS30, basada en una conexión llave-tornillo con capacidad de angulación de 0º a 30º, garantiza siempre la solución óptima a cada rehabilitación.
Esta tecnología aporta unas prestaciones mecánicas excepcionales, absoluta versatilidad y facilidad de uso, por lo que simplifica la labor protética al usuario y se adapta a sus necesidades, mejorando los costes del proceso y reduciendo la posibilidad de errores..

Contenido

Cada aditamento se comercializa por separado.

Indicaciones

Antirrotatorio:

indicado para coronas fijas atornilladas unitarias, en implantes con divergencia.

Rotatorio:

indicado para restauraciones fijas atornilladas múltiples, en implantes con divergencia.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes con una importante reducción del tiempo y de los costes en materiales para su confección.

BHS30 es compatible con las técnicas de colado, Sobrecolado y mecanizado, gracias a sus bases mecanizadas de Cromo Cobalto y de Titanio.

Chimeneas disponibles en 10°, 20° y 30° de angulación.

Materia

Llave Inox. 17 4PH Stainless Steel Tornillo de Titanio grado V. Chimeneas de WIC (Resina Calcinable) Bases de Cromo Cobalto y Titanio grado V

Plataformas

2.82 mm / 3.80 mm.

Tipo de rehabilitación

Atornillada.

Destornillador

Conexión Cóncava Cuatrilobular

Torque de apriete tornillo

En plataforma 2.82 mm entre 20 Ncm como máximo. En plataforma 3.80 mm entre 30 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

El sistema está diseñado para mejorar la estética y funcionalidad de las prótesis atornilladas.

Unitaria Atornillada Angulada M12

TORNILLOS PARA Ø	3.5 - Ø 4.0 mm	TORNILLOS PARA Ø 4.5 - Ø 5.0 mm			
CLÍNICA LABORATORIO		CLÍNICA	LABORATORIO		
IP02025 IP02026		IP02009	IP02010		

PLATAFORMA Ø 2.82 mm				PLATAFORMA Ø 3.80 mm							
Ø 3.5 - Ø 4.0 mm				Ø 4.5 - Ø 5.0 mm							
10º	20º	30º	10º	20º	30º	10º	20º	30º	10º	20º	30º
IP07101	IP07099	IP07097	IP07102	IP07100	IP07098	IP07134	IP07132	IP07130	IP07135	IP07133	IP07131
	T	7			•			8			
\bigcirc								$\langle \rangle$			

Múltiple Atornillada Angulada M12

PLATAFORMA Ø 2.82 mm									
Ø 3.5 - Ø 4.0 mm									
BASE DE CROMO COBALTO BASE DE TITANIO									
IP03070	IP03071	IP03068	IP03069						
T									
\bigcirc		\bigcirc							

CHIMENEA CALCINABLE PARA BASES MECANIZADAS								
BASE DE CROMO COBALTO PARA (SOBRECOLADO O COLADO + SOLDADURA)			BASE DE TITANIO PARA (COLADO + CEMENTADO))					
10º	20º	30º	10º	20º	30º			
IP04088	IP04087	IP04086	IP04061	IP04060	IP04059			
1	1	/	1	1	/			

Múltiple Atornillada para Transepitelial M12

TORNILLOS	
CLÍNICA	LABORATORIO
IP02003	IP02004
	•

CILINDRO CALCINABLE, DIRECTO A TRANSEPITELIAL							
10º	20º	30º					
IP07009	IP07006	IP07003					

PLATAFOR	PLATAFORMA Ø 4.8 mm							
BASE CRO	MO COBALT	0	BASE DE TITANIO					
	IP03008			IP03009				
	8							
	CALCINABLE ADO O COLA A)		CHIMENEA CALCINABLE (COLADO + CEMENTADO)					
10º	20º	30º	10º	20º	30º			
IP04010	IP04006	IP04002	IP04012	IP04008	IP04004			
1	1	/	/	1	/			

Pilares tallables rectos

Finalidad

Actúa como elemento directo al implante. Una vez tallada su parte superior se encera para realizar el colado. Posteriormente se atornilla y se cementa la corona definitiva al pilar como estructura final del diente. Su geometría anatómica permite una mejor adaptación de los tejidos blandos ofreciendo al paciente una óptima estética.

Contenido

Pilar tallable recto más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias o múltiples cementadas, directas a implantes.

Óptimo para nivelar la altura de emergencia de la corona en relación a los dientes adyacentes y espesores de los tejidos blandos.

Ventajas en la utilización

Facilita el control de la estética de la prótesis. Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Material

Pilar tallable recto y tornillo: Titanio grado V.

Plataformas

2.82 mm / 3.80 mm.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 2.82 mm entre 20 y 25 Ncm como máximo. En plataforma 3.80 mm entre 30 y 35 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Nota

Se mecaniza con una cara plana en la parte superior cónica del pilar para poder posicionar la corona al cementar y guardar una línea oclusal óptima con los dientes adyacentes. Todos los pilares llevan grabado en la cara plana la altura gingival. Disponibilidad de alturas: 1.0 mm, 2.0 mm y 3.0 mm.

Pilar tallable recto anatómico

PLATAFORMA	Ø 2.82 mm		PLATAFORMA Ø 3.80 mm			
Ø 3.5 - 4.0 mn	n		Ø 4.5 - 5.0 mm			
Н1	H2	Н3	H1	H2	Н3	
61QH1	61QH2	61QH3	61LH1	61LH2	61LH3	
H1.0	H2.0	H3.0	7 HTO	T H20	TH30	
	\bigcirc	\bigcirc	\bigcirc		\bigcirc	

Pilares tallables angulados

Finalidad

Actúa como elemento directo al implante.

Una vez tallada su parte superior se encera para realizar el colado corrigiendo la divergencia de la colocación de los implantes. A continuación, se atornilla y se cementa la corona definitiva al pilar como estructura final del diente. Su geometría anatómica permite una mejor adaptación de los tejidos blandos ofreciendo al paciente una óptima estética.

Contenido

Pilar tallable angulado más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias, múltiples cementadas.

Permite la corrección en implantes divergentes, nivela las alturas de emergencia de las coronas en relación a los dientes adyacentes y permite una perfecta adaptación en distintos espesores de tejido blando.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes.

Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Materia

Pilar tallable angulado y tornillo: Titanio grado V.

Plataformas

2.82 mm / 3.80 mm.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 2.82 mm entre 20 y 25 Ncm como máximo. En plataforma 3.80 mm entre 30 y 35 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Disponibles en distintas alturas: 2.0 mm, 3.0 mm y 4.0 mm. Disponibles en distintas angulaciones: 15° y 25°.

Nota

Todos los pilares llevan grabado en su parte superior cónica la altura gingival y angulación.

Pilar tallable angulado

PLATAFORMA Ø 2.82 mm					PLATAFORMA Ø 3.80 mm						
Ø 3.5 - 4.0 mm					Ø 4.5 - 5.0 mm						
15° 25°				15° 25°							
H2 H3 H4			H2	Н3	H4	H2	Н3	H4	H2	Н3	Н4
71Q15H2	71Q15H3	71Q15H4	71Q25H2	71Q25H3	71Q25H4	71L15H2	71L15H3	71L15H4	71L25H2	71L25H3	71L25H4
									V		

Pilares de bola

Finalidad

Pilar base para la reconstrucción protésica de sobredentaduras implanto-muco-soportadas sobre bolas, para maxilares inferiores.

Indicaciones

Indicados en sector anterior mandibular para prótesis completas, sobre un mínimo de cuatro pilares de bola. El casquillo metálico se ubica en la prótesis y contiene en su interior la retención de teflón / O-ring.

Aditamentos complementarios no incluidos

Conjunto 1. Anillo titanio + O-ring. Conjunto 2. Cazoleta titanio + Retención teflón.

Ventajas en la utilización

Permiten una angulación máxima de 25° a 30°.

Recomendaciones

No utilizar en maxilar superior. Se recomienda la colocación mínima de 4 implantes en maxilares inferiores. Con el sistema O-ring dejar expuesto supragingival el pilar de bola 1.5 mm.

Materia

Pilar y anillo de Titanio grado V, O-ring de elastómero natural y retención de teflón.

Plataformas

2.82 mm / 3.80 mm.

Torque de apriete 35 Ncm.

Pilar de bola

RETENCIÓN SISTEMA	O-RING	RETENCIÓN SISTEMA TEFLÓN				
Anillo metálico	O-ring	Cápsula metálica	Retención de teflón			
8RAM	8ROR	8RCM	8RTF			

Notas

- Todos los pilares llevan grabado en su parte superior la altura gingival.
- Diámetro de la bola 2.50 mm.
 Disponibilidad de alturas: 1.0 mm, 2.5 mm y 4.0 mm.
- Realizar revisiones periódicamente para la sustitución de los teflones/O-ring.

Pilares LDCX®

Finalidad

Sistema de anclaje supragingival de eje resiliente para sobredentaduras sobre implantes. Consta de dos elementos: uno metálico que se atornilla directo a implante, y una cazoleta metálica que va colocada en la prótesis y contiene la retención de nylon según selección.

Contenido

Pilar LOCX®, posicionador/tránsfer de impresión, cazoleta de titanio, espaciador, retenciones: negra, azul, rosa, transparente y roja.

Aditamentos complementarios no incluidos en los sets

Retención de color naranja y verde.

Indicaciones

El sistema de anclaje "LOCX", está diseñado para la retención en dentaduras completas / parciales en implantes situados en la mandíbula o maxilar. Se recomienda un mínimo de 2 implantes en mandíbula. Se recomienda un mínimo de 4 implantes en el maxilar

Las retenciones con centrador color (transparente, azul y rosa) corrigen una divergencia de 10° por pilar, a diferencia de las retenciones sin centrador (roja, naranja y verde) que corrigen una divergencia de 20° por pilar.

La retención de color negro se utiliza exclusivamente para el proceso del rebase en clínica/laboratorio.

Ventajas en la utilización

Mayor versatilidad en la corrección de angulaciones y durezas en las retenciones.

Pilar y cazoleta de Titanio grado V, retenciones de Nylón.

Plataformas 2.82 mm / 3.80 mm.

Torque de apriete

35 Ncm.

Contraindicaciones relativas de uso

En aquellos tratamientos donde se requiera una conexión rígida total.

En implantes con divergencias superiores a 20° respecto a la vertical.

Espacio protésico reducido.

Pacientes bruxistas.

Está contraindicado el uso de los aditamentos LOCX" en pacientes que presenten alergia o sean hipersensibles a los materiales en que se fabrican los mismos.

Recomendaciones

En la medida de lo posible es aconsejable dejar expuesto supragingival el pilar aproximadamente 1.5 mm, para evitar las presiones de las retenciones.

Se recomienda realizar la prótesis en el laboratorio para obtener un óptimo acabado de la misma. Se debe polimerizar la resina para endurecerla y eliminar los monómeros para evitar irritaciones en la mucosa.

Notas

- Se recomienda realizar controles periódicos al paciente hasta conseguir un óptimo ajuste entre el tejido blando y la prótesis.
- Realizar revisiones periódicamente para la sustitución de las retenciones.

Pilares LOCX®

PLATAFORMA Ø 2.82 mm					PLATAFORMA Ø 3.80 mm					
Ø 3.5 - 4.0 mm					Ø 4.5 - 5.0 mm					
НО.5	H2	Н3	H4	H5	H0.5	H2	Н3	H4	Н5	
91H05Q	91H2Q	91H3Q	91H4Q	91H5Q	91H05L	91H2L	91H3L	91H4L	91H5L	
								Access to the second se		

Retenciones LOCX®

RETENCIONES									
			Divergen hasta 10°				Divergen hasta 20°		
Set (2 Uds)	Espaciador (4 Uds.)	Capsula metálica (4 Uds.)	Ret. Negra 0 Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9R00L	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
	0								

Instrumental LOCX®

Aditamentos LOCX®

Pilares transepiteliales

Finalidad

Aditamento mecanizado que, fijado directamente al implante, realiza la función principal de actuar como elemento intermedio entre el implante y la prótesis. La existencia en varias alturas, 1.0 mm, 2.0 mm, 3.0 mm y 4.0 mm en pilares rectos y 3.0 mm y 5.0 mm en angulados, permiten elevar el plano de asentamiento de la prótesis cuando existe un grosor de tejido blando que no es adecuado para realizar una conexión directa a implante. Sus angulaciones de 17° y 30°, permiten la corrección de disparalelismos entre implantes o bien, entre implante y dientes adyacentes.

Su geometría anatómica está diseñada para una mejor adaptación de los tejidos blandos y así obtener una óptima estética final.

Aditamentos complementarios incluidos

Los pilares transepiteliales angulados se suministran con posicionador y tornillo de retención, y se comercializan anodizados en color rosa y con marcado láser para una mejor identificación.

Indicaciones

- Indicados para rehabilitaciones unitarias y múltiples.
- Para técnicas de carga o estética inmediata.
- En los casos comprometidos donde la colocación de otros tipos de aditamentos protésicos son un alto riesgo para la estética del paciente.
- En los casos con déficit importante de la masa ósea elástica mandibular, donde la colocación de implantes para otros tipos de rehabilitación supone un alto riesgo de fractura ósea.
- Importante: En casos unitarios solo se pueden utilizar los pilares transepiteliales rectos.

Material

Titanio grado V.

Materiales torretas

Provisional: Peek. Titanio: Titanio grado V. Calcinable: Plexi Glass.

Plataforma:

2.82 mm / 3.80 mm.

Llaves de torque

Pilares rectos: Llave transepitelial. Pilares angulados: 1.25 mm Hexagonal

Torques de apriete

Pilares rectos

35 Ncm.

Pilares angulados

Plataforma 2.82 mm entre 20 y 25 Ncm como máximo. Plataforma 3.80 mm entre 30 y 35 Ncm como máximo.

Tapones pilares de cicatrización

IO Ncm.

Tornillo retención torreta

15 Ncm.

Ventajas en la utilización

Sus angulaciones permiten la corrección de disparalelismos entre implantes y/o dientes adyacentes.

Solución mínimamente invasiva con restauración fija de arcada completa para la técnica del All-on-four* colocando dos transepiteliales angulados en zona posterior y dos rectos en zona anterior por arcada. Esta técnica permite rehabilitar una arcada completa con tan solo 4 implantes sin necesidad de realizar injertos óseos, gracias a la inclinación de los transepiteliales posteriores.

Contraindicaciones relativas de uso

Estaría contraindicado en todos los casos en los que se considere mejor el uso de otro tipo de rehabilitación.

Recomendaciones

Para la planificación es necesario utilizar el tránsfer de impresión y análogo específicos para el pilar transepitelial.

Para la rehabilitación de transepiteliales unitarios, utilizar análogo, tránsfer de impresión y torretas antirrotatorias.

En caso de realizar una estética inmediata, se recomienda utilizar el pilar provisional de Peek.

Oxtein M12 Soluciones Protésicas

Transepitelial recto anatómico

PLATAFORMA Ø	PLATAFORMA Ø 2.82 mm			PLATAFORMA Ø 3.80 mm			
Ø 3.5 - 4.0 mm				Ø 4.5 - 5.0 mm			
H1	H2	Н3	H4	Н1	H2	Н3	H4
MU1QH1A	MU1QH2A	MU1QH3A	MU1QH4A	MU1LH1A	MU1LH2A	MU1LH3A	MU1LH4A

Transepitelial angulado anatómico

PLATAFORMA Ø 2.82 mm			PLATAFORMA Ø 3.80 mm				
Ø 3.5 - 4.0 mm	Ø 3.5 - 4.0 mm			Ø 4.5 - 5.0 mm			
17°		30°		17°		30°	
Н3	H5	Н3	Н5	Н3	Н5	Н3	Н5
MU1Q173A	MU1Q175A	MU1Q303A	MU1Q305A	MU1L173A	MU1L175A	MU1L303A	MU1L305A

Transepitelial recto estándar

PLATAFORMA Ø 2.82 mm			PLATAFORMA Ø 3.80 mm				
Ø 3.5 - 4.0 mm				Ø 4.5 - 5.0 mm			
H1	H2	Н3	Н4	H1	H2	Н3	H4
MU1QH1	MU1QH2	MU1QH3	MU1QH4	MU1LH1	MU1LH2	MU1LH3	MU1LH4

Transepitelial angulado estándar

PLATAFORMA Ø 2.82 mm			PLATAFORMA Ø 3.80 mm				
Ø 3.5 - 4.0 mm	Ø 3.5 - 4.0 mm			Ø 4.5 - 5.0 mm			
17°		30°		17°		30°	
Н3	Н5	Н3	Н5	Н3	Н5	Н3	Н5
MU1Q17H3	MU1Q17H5	MU1Q30H3	MU1Q30H5	MU1L17H3	MU1L17H5	MU1L30H3	MU1L30H5

Oxtein M12 Soluciones Protésicas

Tapón de cicatrización transepitelial

Н 6	H 4.5	
Plano	Cóncavo	Convexo
MU1PLN	MU1CCV	MU1CVX

Tránsfer transepitelial

Análogo trasepitelial

Torreta transepitelial

PROVISIONAL DE PEE	EK	DE TITANIO		CALCINABILE	
Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)	Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)	Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)
MUIEPKR	MUIEPKAR	MUITR	MUITAR	MU1CR	MU1CAR
\bigcirc	\bigcirc				\bigcirc

Llave para transepielial

MANUAL DE CONEXIÓN A CARRACA	C/A MECÁNICO
YMULLTCR	YMULLTCA

Oxtein M12 Soluciones Protésicas

Pilar gingival continuo

Finalidad

Actúa como pilar directo simultáneo a la colocación al implante, especialmente del sector anterior e idealmente no ha de retirarse jamás de la unión con el implante.

Recibe una prótesis cementada cuya impresión o escaneado se realiza de forma DIRECTA al pilar una vez haya transcurrido el periodo de provisionalización más adecuado.

Contenido

Pilar Pilar PGC más tornillo de fijación al implante.

Indicaciones para rehabilitaciones

Unitarias o múltiples cementadas, directas a implantes. No retirar de la fijación en ningún momento tras su roscado al implante.

Especialmente óptimo en casos de implante anterior post exodoncia y carga inmediata.

En aquellos casos en que es crítico el fomento del T.C. (tejido conectivo) periimplantario en zonas estéticas.

Ventajas en la utilización

La mejor opción para que prolifere el mejor T.C. alrededor del pilar y la futura rehabilitación.

Su geometría convergente desde el implante lo convierte en ideal para promover el crecimiento y el grosor del tejido conectivo periimplantario.

Sus micro-espiras paralelas localizadas en la parte trans-gingival del pilar, resultan en zonas de estímulo de proliferación de las fibras de colágeno del T.C que abrazan al pilar.

Material

Titanio grado V.

Tornillo

Titanio grado V.

Plataformas

2.82 mm / 3.80 mm.

Tipo de restauración

Atornillada. Para restaurar directo a implante

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 2.82 mm entre 20 y 25 Ncm como máximo. En plataforma 3.80 mm entre 30 y 35 Ncm como máximo.

Contraindicaciones de uso

En casos en que no se pueda realizar implantología de carga inmediata y o post exodoncia inmediata.

Solo se contraindica en los casos anteriores, su uso inmediato, pero no el diferido tras una determinada segunda cirugía.

Sugerencias de utilización

Tallar convenientemente la zona que queda supra gingival para conformar el provisional adecuado que soporte el coágulo, y ayude a la mejora del T.C.

Usar siempre con provisional simultaneo sostenedor del TC $\,$

PGC - Pilar Gingival Continuo

PLATAFORMA Ø 2.82 mm	PLATAFORMA Ø 3.80 mm
Ø 3.5-4.0 mm	Ø 4.5-5.0 mm
PG1Q3540	PG1L4550

Oxtein M12 Soluciones CAD CAM

Scan Body

Finalidad

Aditamento utilizado como elemento de medición para transferir virtualmente la posición del implante en el modelo de trabajo o directo desde boca, y así posteriormente, proceder a la elaboración de la prótesis personalizada implantosoportada vía CAD CAM. También denominado localizador o marker.

Contenido

Scan body más tornillo retentivo.

Elementos complementarios no incluidos

Biblioteca digital correspondiente a la conexión.

Indicaciones

Realización de estructuras implantosoportadas directas a implante o transepiteliales. Colocación en boca para la toma de impresión intraoral en clínica, o colocación en el modelo de trabajo para escaneado de éste en laboratorio. Recomendable utilizar tantos scan bodies como implantes haya en la restauración para obtener mayor precisión y rapidez.

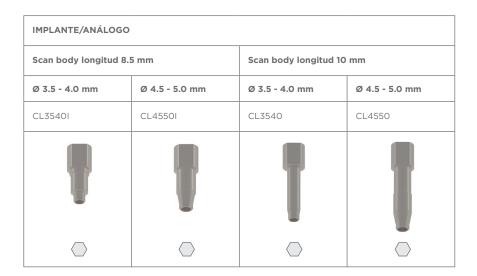
Ventajas en la utilización

Fácil lectura, sin necesidad de sprays. Sistema compatible con los principales softwares cad:

- 3shape.
- Exocad.
- Dental Wings.

Sugerencia de uso

En su uso en clínica o en boca, tener en cuenta la altura de la encía, ya que podría dificultar la lectura óptima del localizador.


Material

Scan body: Peek. Tornillo: Titanio grado V.

Tipo de destornillador Hexagonal 1.25 mm.

Torque de apriete tornillo

Scan bodies

TRANSEPITELIAL				
Scan body longitud 8.	5 mm	Scan body longitud 10	mm	
CLMURI	CLMUARI	CLMUR	CLMUAR	
			\bigcirc	

Análogo para impresora 30

Plataforma Ø 2.82 mm	Plataforma Ø 3.80 mm
41P283D	41P383D

TRANSEPITELIALES	
MUU4R3D	MUU4AR3D

Oxtein M12 Soluciones CAD CAM

Interfases

Finalidad

Elemento directo al implante que, una vez cementado a la corona o puente, sirve como estructura final de la restauración.

Contenido

Interfase más tornillo retentivo.

Indicaciones

Interfase antirrotatoria: indicada para coronas fijas atornilladas unitarias. Interfase rotatoria: indicada para restauraciones fijas múltiples.

Utilizar junto al scan body y biblioteca digital correspondiente para la fabricación de la prótesis definitiva.

Ventajas en la utilización

Garantiza un ajuste óptimo a la conexión del implante. Mejor distribución de las cargas.

Contraindicaciones de uso

En casos de espacio oclusal muy limitado.

Material

Interfases y tornillo: Titanio grado V.

Tipo de destornillador

Hexagonal 1.25 mm.

Torque de apriete tornillo

Interfase a implante Plataforma 2.82 mm entre 20 y 25 Ncm máximo Plataforma 3.80 mm entre 30 y 35 Ncm máximo

Interfase a transepitelial 15 Ncm.

Interfases

TRANSEPITELIAL		
Rotatorio / multiples	Antirrotatorio / unitario	
CIMUR	CIMUAR	

Oxtein M12 Tornillos

Tornillo de cierre

Características generales

En cirugías de dos fases, tras la inserción de los implantes, cubiertos o parcialmente cubiertos por tejido blando, y durante la fase de reparación de los tejidos de sostén, debe existir una protección de la conexión del implante para evitar su obstrucción antes de la carga de la supraestructura o prótesis. Para ello se coloca roscado el tornillo de cierre.

Plataforma Ø 2.82 mm	Plataforma Ø 3.80 mm
Ø 3.5 - 4.0 mm	Ø 4.5 - 5.0 mm
11TCQ	11TCL

Tornillos M12

	RETENCIÓN PRÓTESIS CLÍNICA / INTERFASES		/ RETENCIÓN ABORATORIO	TRANSEPITE	TRANSEPITELIALES			TRANSEPITELIALES SCAN BODY		
Ø 3.5 - 4.0 mm	Ø 4.5 - 5.0 mm	Ø 3.5 - 4.0 mm	Ø 4.5 - 5.0 mm	Retentivo torretas	Retentivo angulado Ø 2.82 mm	Retentivo angulado Ø 3.80 mm	Laboratorio + tránsfer impresión	Ø 3.5 - 4.0 mm	Ø 4.5 - 5.0 mm	
11TRQ	11TRL	11TLQ	11TLL	MUITRM	11TRQ	MU1TRPAL	MUU1TL	11TRQ	11TRLCL	

Nota

El tornillo del transfer de impresión de 3 Pzas (Ref: 11TLQ) no se vende por separado.

^{*}Conexión hexagonal 1.25 mm.

Oxtein M8

Contenido

Implante Oxtein M8	84
Secuencia de fresado	86
Sets quirúrgicos	88
Instrumental	90
Protocolo quirúrgico	96
Soluciones Protésicas	100
Pilares de cicatrización	108
Selección en la toma de impresión	109
Análogos	110
Bases mecanizadas y UCLAS	110
Soluciones atornilladas anguladas	112
Pilares tallables para cementary pilares SYN para atornillar	116
Pilares tallables angulados	120
Pilares de bola	122
Pilar LOCX	124
Soluciones CAD CAM	128
Scan body	128
Interfases	130
Tornillos	132

Oxtein M8

El implante M8 tiene una altura de cuello de 1.8 mm diseñada para optimizar la estética y el perfil de emergencia, lo que le permite que el sellado gingival se produzca simultáneamente a la integración ósea gracias al contacto íntimo directo del cuello del implante con los tejidos blandos.

Titanio

Grado IV cold worked.

Tratamiento superficial Oxigenna

"Surface argón system".

Conexión

Cono morse 8º octógono interno.

Plataformas

Ø 4.8 mm.

Ø 6.5 mm.

Hombro de 45º

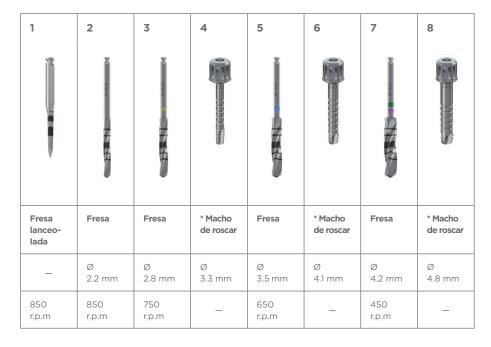
Distribución óptima de la carga.

Conexión octogonal interna cono morse

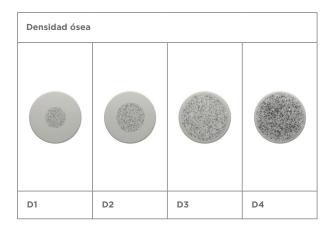
Garantía de flexibilidad y reposicionamiento preciso de la prótesis con distribución uniforme de la carga y uniones estables entre el implante y aditamento protésico.

Transportador 3 en 1

- 1. Transportador.
- 2. Tránsfer de impresión para cubeta cerrada.
- 3. Pilar tallable o fresable para cementar o cemento-atornillar con codificación de color identificativo del diámetro del implante.



REFERENCIAS SISTEMA TRANSPORTADOR 3 EN 1					
Ø vs H	Ø 3.3 mm	■ Ø 4.1 mm	■Ø 4.8 mm	■ Ø 4.8 mm	
H 6.0 mm	_	M84106ST	M84806ST	M84806MT	
H 8.0 mm	M83308ST	M84108ST	M84808ST	M84808MT	
H 10.0 mm	M83310ST	M84110ST	M84810ST	M84810MT	
H 12.0 mm	M83312ST	M84112ST	M84812ST	M84812MT	
H 14.0 mm	M83314ST	M84114ST	M84814ST	_	
H 16.0 mm	M83316ST	M84116ST	_	_	
Conexión	Ø 4.8 mm			Ø 6.5 mm	


Oxtein M8 Secuencia de fresado

Secuencia detallada paso a paso

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.2 mm a 850 r.p.m.
- **3** Fresa final \varnothing 2.8 mm para implante de \varnothing 3.3 mm a 750 r.p.m.
- 4 Macho de roscar Ø 3.3 mm. Utilizar solo en casos de hueso D1 y D2.
- 5 Fresa final \varnothing 3.5 mm para implante de \varnothing 4.1 mm a 650 r.p.m.
- 6 Macho de roscar Ø 4.1 mm. Utilizar solo en casos de hueso D1 y D2.
- 7 Fresa final Ø 4.2 mm para implante de Ø 4.8 mm a 450 r.p.m.
- 8 Macho de roscar Ø 4.8 mm. Utilizar solo en casos de hueso D1 y D2.
 - * En caso de una inserción de implante a nivel crestal, utilizar fresa perfiladora correspondiente al Ø de implante planificado.

Recomendaciones importantes

Utilizar irrigación abundante.

No sobrepasar los 35-45 Ncm, en la inserción del implante. Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso.

*Macho de roscar y fresas perfiladoras

Se recomienda el uso de machos de roscar para la colocación de implantes cónicos en D1 y D2. Disponibles en conexión a carraca y a C/A.

El uso de las fresas perfiladoras, es para la realización de una inserción de implante a nivel crestal.

Secuencia para implante de Ø 3.3 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.2 mm a 850 r.p.m.
- **3** Fresa Ø 2.8 mm para implante de Ø 3.3 mm a 750 r.p.m.
- 4 Macho de roscar Ø 3.3 mm.

Diámetro implante	Densidad ósea	1	2	3	4
3.3 mm	D1 - D2	•	•	•	•
	D3 - D4	•	•	•	

Secuencia para implante de Ø 4.1 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.2 mm a 850 r.p.m.
- **3** Fresa Ø 2.8 mm a 750 r.p.m.
- **5** Fresa final Ø 3.5 mm para implante de Ø 4.1 mm a 650 r.p.m.
- 6 Macho de roscar Ø 4.1 mm.

Diámetro implante	Densidad ósea	1	2	3	4	5	6
4.1 mm	D1 - D2	•	•	•		•	•
	D3 - D4	•	•	•		•	

Secuencia para implante de Ø 4.8 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.2 mm a 850 r.p.m.
- **3** Fresa Ø 2.8 mm a 750 r.p.m.
- **5** Fresa Ø 3.5 mm a 650 r.p.m.
- 7 Fresa final Ø 4.2 mm para implante de Ø 4.8 mm a 450 r.p.m.
- 8 Macho de roscar Ø 4.8 mm.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7	8
4.8 mm	D1 - D2	•	•	•		•		•	•
	D3 - D4	•	•	•		•		•	

Oxtein M8 Sets quirúrgicos

Set plus

Y2SQ - Set quirúrgico M8 incluye:					
Y2CRD	Llave carraca fija y dinamométrica de titanio				
Y2LLA	Llave acodada de extremo abierto				
Y2ACAC	Adaptador C/A corto				
Y2ACRL	Adaptador carraca largo				
Y2DCA	Atornillador C/A conexión Torx				
Y2DML	Atornillador manual carraca largo conexión Torx				
Y2MP2228	Medidor prof. / paralelizador Ø 2.2 mm / 2.8 mm				
Y2EXP	Extractor protésico				
Y2DR	Driver mecánico directo a implante				
YUFRL	Fresa lanceolada				
Y2FR22L	Fresa larga de Ø 2.2 mm				
Y2FR28L	Fresa larga de Ø 2.8 mm				
Y2FR35L	Fresa larga de Ø 3.5 mm				
Y2FR42L	Fresa larga de Ø 4.2 mm				
Y2MR33	Macho de roscar Ø 3.3 mm				
Y2MR41	Macho de roscar Ø 4.1 mm				
Y2MR48	Macho de roscar Ø 4.8 mm				
Y2FRPF28	Fresa perfiladora Ø 2.8 mm				
Y2FRPF35	Fresa perfiladora Ø 3.5 mm				
Y2FRPF42	Fresa perfiladora Ø 4.2 mm				

The Perfect Match

Instrumental a medida

"Dentro de nuestro concepto de "simplicidad", el instrumental incluido en nuestro set M8 ha sido pensado para que el clínico cuente con todo lo que necesita de forma rápida y sencilla. Nos hemos asegurado de colocar indicadores para facilitar la ubicación de todos sus elementos.

Oxtein M8 Instrumental

Fresa lanceolada Fresa perfiladoras

Fresa corta

FRESA PILOTO CORTA	FRESA QUIRÚRGICA CORTA				
Ø 2.2 mm	Ø 2.8 mm	Ø 3.5 mm	Ø 4.2 mm		
Y2FR22C	Y2FR28C	Y2FR35C	Y2FR42C		

Fresa larga

FRESA PILOTO LARGA	FRESA QUIRÚRGICA LARGA				
Ø 2.2 mm	Ø 2.8 mm	Ø 3.5 mm	Ø 4.2 mm		
Y2FR22L	Y2FR28L	Y2FR35L	Y2FR42L		

Bisturí circular de conexión c/a

Ø 3.3 mm	Ø 3.5 mm	Ø 3.75 mm	Ø 4.0 mm	Ø 4.25 mm	Ø 4.5 mm	Ø 4.8 mm	Ø 5.0 mm
IP5277A	IP5286A	IP5279A	IP5280A	IP5282A	IP5285A	IP5287A	IP5283A
ne o	area	0.000		00000	045	0.48	

Oxtein M8 Instrumental

Macho de roscar

CONEXIÓN A CARRACA					
Ø 3.3 mm	Ø 4.1 mm	Ø 4.8 mm			
Y2MR33	Y2MR41	Y2MR48			

Medidor de profundidad y pin de paralelismo

Driver

Prolongador de fresas

Adaptador

CARRACA CORTO	CARRACA LARGO	CONTRA ÁNGULO CORTO	CONTRA ÁNGULO LARGO	
Y2ACRC	Y2ACRL	Y2ACAC	Y2ACAL	

Oxtein M8 Instrumental

Llaves

LLAVE DE EXTREMO ABIERTO	LLAVE CARRACA DE TITANIO FIJA Y DINAMOMÉTRICA (20 A 55 Ncm.)	
Y2LLA	Y2CRD	
M8 Oxtein		

Punta atornillador

CONEXIÓN CARRACA	/ MANUAL	CONEXIÓN CONTRA ÁNGULO
Corta	Larga	Media
Y2DMC	Y2DML	Y2DCA

Extractor prótesis

Oxtein M8 Protocolo quirúrgico

Preparación de los tejidos blandos y de la zona cortical

¹ Con bisturí circular

Se inicia la secuencia quirúrgica con el bisturí circular correspondiente al Ø de implante planificado a una velocidad de giro de 350 r.p.m.

Una vez realizado el corte, se extrae el tejido blando sobrante mediante periostotomo y/o pinza.

Se recomienda el uso de una férula quirúrgica para continuar con la osteotomía.

² Con incisión de colgajo

Se inicia la incisión levantado el colgajo con la ayuda de separadores gingivales.

Se recomienda el uso de una férula quirúrgica una vez haya acceso a la cresta ósea.

En casos de encontrar crestas óseas estrechas, se aconseja regularizarla para aumentar la anchura vestíbulo-lingual o palatina.

³ Secuencia quirúrgica inicial con fresa lanceolada

Se inicia la secuencia con la fresa lanceolada, con una velocidad de giro de 850 r.p.m, hasta traspasar la cortical ósea centralizando el eje para las siguientes osteotomías.

Se insertará por la guía de la férula quirúrgica en caso de usarse ésta.

Importante

Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental.

Es necesario abundante irrigación en todas las osteotomías y procesos hasta la inserción del implante.

Preparación del lecho óseo

Después de haber finalizado la preparación de la zona gingival y cortical, se procede a realizar la osteotomía con la fresa piloto de Ø 2.2 mm a una velocidad de giro de 850 r.p.m hasta la longitud planificada.

Secuencia final

- 2 Longitud de fresado para implante Oxtein MB Ø 3.3 mm Después de haber concluido la fase anterior, se procede a realizar la osteotomía final para el implante Oxtein M8 Ø 3.3 mm, se realiza con la fresa de Ø 2.8 mm, a una velocidad de giro de 750 r.p.m profundizando hasta la longitud planificada.
- 3 Longitud de fresado para implante Oxtein M8 Ø 4.1 mm La osteotomía final para el implante Oxtein M8 Ø 4.1 mm se realiza con la fresa de Ø 3.5 mm, a una velocidad de giro de 650 r.p.m hasta la longitud planificada.
- ⁴ Longitud de fresado para implante Oxtein MB Ø 4.8 mm La osteotomía final para el implante Oxtein M8 Ø 4.8 mm se realiza con la fresa de Ø 4.2 mm, a una velocidad de giro de 450 r.p.m hasta la longitud planificada.

· Puntos importantes a tener en cuenta

Después de haber realizado las primeras osteotomías con las fresas correspondientes, se debe insertar el medidor de profundidad/paralelizador para comprobar la longitud de fresado y paralelismo obtenido. Si se detectan calidades óseas con D1 y D2, en zonas mandibulares y maxilares anteriores y corticales gruesas, se debe conformar el lecho óseo mediante el macho de roscar correspondiente al Ø de implante a colocar. Disponibles con conexión a llave carraca. La fresa perfiladora se usará en los casos de realizar una inserción de implante a nivel crestal.

Oxtein M8 Protocolo quirúrgico

Proceso de inserción del implante Oxtein M8 con transportador

- Abrir la caja del implante con guantes de nitrilo por la zona troquelada.
- 2 Extraiga la bandeja en la que está depositado el blíster del implante.
- 3 Posteriormente, en condiciones estériles, desprecintar el blíster por la esquina no redondeada hasta liberar al vial de plástico con el tapón de titanio que hay en su interior.
- **4** Depositar el vial en campo estéril sin tocarlo con los guantes.
- **5** Seguidamente retirar el tapón de titanio que va a presión.
- **6** Extraer axialmente del interior del vial el soporte plástico donde se encuentra el implante con su transportador.
- 7 No tocar el implante con los guantes para evitar su contaminación y sujetando firmemente el soporte plástico, acoplar los hexágonos del transportador y del adaptador con movimiento rotacional y axial hasta oír un click.
- **8** Una vez conexionado, extraer el implante de su soporte con un ligero movimiento ascendente.
- 9 Finalmente llevar el implante a boca para iniciar su inserción.



Importante

Antes de proceder a realizar la inserción del implante, leer detenidamente las instrucciones de uso.

No sobrepasar los 45 Ncm en la inserción del implante.

Tornillo de cierre no incluido.

Requiere pilar de cicatrización o aditamento a determinar según el tipo de cirugía y se adquiere por separado.

The Perfect Match

Tu éxito también es el nuestro

Cada uno de los envases de nuestros implantes Oxtein incluye no solo las indicaciones de uso que detallan la forma correcta de utilización de cada uno de ellos, sino que adicionalmente también contiene indicaciones prácticas para los pacientes que facilitarán el trabajo del clínico en el proceso de recuperación post-operatorio de sus pacientes.

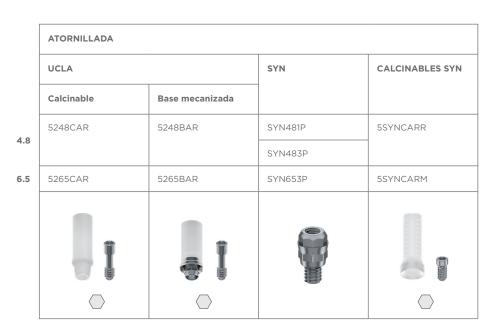
Así mismo encontrará también en cada uno de ellos la carta de garantía de por vida de nuestros implantes, y por supuesto el pasaporte implantológico que podrá ofrecer a sus pacientes como certificado de trazabilidad.

Oxtein M8Soluciones Protésicas

Plataforma 4.8 mm Plataforma 6.5 mm

Análogos

		SYN	PILAR LOCX	3D	
4.8	42P48	42SYNR	9U4	42P483D	42SYNR3D (SYN)
6.5	42P65	42SYNM		42P653D	42SYNM3D (SYN)


Tránsfer de impresión

Pilares de cicatrización

		TAPÓN PILAR SYN
4.8	2248H1	2SYN48
4.8	2248H2	
4.8	2248H3	
4.8	2248H4	
6.5	2265H1	2SYN65
6.5	2265H2	
6.5	2265H3	
6.5	2265H4	

Unitaria

Unitaria Atornillada Angulada M8

	TORNILLOS					
4.8	IPO2011 (Tor. Clínica)		IP02012 (Tor. Lab.)			
SYN	IP02013 (Tor. Clínica)		IP02014 (Tor. Lab.)	•		

Oxtein M8 Soluciones Protésicas

Plataforma 4.8 mm Plataforma 6.5 mm

Unitaria Atornillada Angulada M8

CILÍNDRO CALCINABLE				
10º	20º	30º		
IP07050	IP07035	IP07020		
IP07052	IP07037	IP07022		
1	1	1		
\bigcirc	\bigcirc			

	CHIMENEA CALCINABLE (COLADO + CEMENTADO)					
10º	10º 20º 30º					
IP04023	IP04022	IP04021				
	1	/				
	Base Ti					
	IP03016					
	#					

Unitaria / Múltiple

	CEMENTADA					
	Pilar recto			Pilar angulado		
	Pilar	Calcinable hombro recto		15°	20°	Calcinable hombro angulado
4.8	6248	6248CAR	6248CR	724815	724820	7248CANG
6.5	6265	6265CAR	6265CR	726515	726520	7265CANG
	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	

Plataforma 4.8 mm Plataforma 6.5 mm

Múltiple

	ATORNILLADA				
	UCLA		SYN	Calcinables SYN	
	Calcinable	Base mecanizada			
4.8	5248CR	5248BR	SYN481P	5SYNCRR	
4.0			SYN483P		
6.5	5265CR 5265BR		SYN653P	5SYNCRM	
			9999		

Múltiple Atornillada Angulada M8

LLAVE	
IP01001	

	TORNILLOS				
4.8	IP02011 (Tor. Clínica)		IP02012 (Tor. Lab.)		
SYN	IP02013 (Tor. Clínica)	4	IP02014 (Tor. Lab.)	dim	

Oxtein M8 Soluciones Protésicas

Plataforma 4.8 mm Plataforma 6.5 mm

Múltiple Atornillada Angulada M8

CILÍNDRO CALCINABLE					
10º	20º	30º			
IP07051	IP07036	IP07021			
IP07053	IP07038	IP07023			
1	1	1			

	CHIMENEA CALCINABLE (COLADO + CEMENTADO)							
	10º	20º	30º					
4.8	IP04023	IP04022	IP04021					
		1	/					
		Base Ti						
	IP03017							

Plataforma 4.8 mm Plataforma 6.5 mm

Sobredentadura

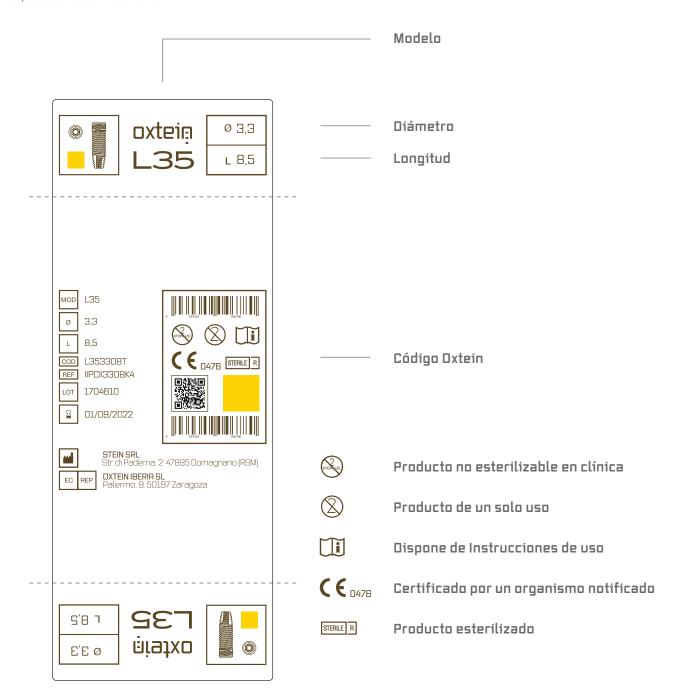
PILAR DE BOLA							
	Н1	H2	Н3	Retenciones			
4.8	8248H1	8248H2	8248H3	82RCM	82RTF		

PILARES LOCX [®]								
	Н1	H2	Н3	H4	Н5			
4.8	8 9248H1 9248H2		9248H3	9248H4	9248H5			

Oxtein M8 Soluciones Protésicas

Plataforma 4.8 mm Plataforma 6.5 mm

RETENCIONES									
			Divergen hasta 10°			Divergen hasta 20°			
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra 0 Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9R00L	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
	0								


CAD CAM

	SCAN BODY			INTERFASE			
	Longitud 8.5 mm	Longitud 10 mm	SYN		Directo a implante		SYN
			Longitud 8.5 mm Longitud 10 mm				
4.8	CL48I	CL48	CLSYN48I	CLSYN48	CIM8SR	CIM8SAR	CISYNSR
6.5	CL65I	CL65	CLSYN65I	CLSYN65	CIM8MR	CIM8MAR	CISYNMR

The Perfect Match

Ponemos la información a tu alcance

La etiqueta exterior de los implantes Oxtein fue diseñada para facilitar la rápida identificación de todas las características relevantes de cada una de ellos lo que le garantiza tener el correcto conocimiento del contenido antes de proceder a abrir el envase.

Pilar de cicatrización

Características generales

Las distintas longitudes que ofrece el sistema Oxtein M8 en pilares de cicatrización, están cuidadosamente diseñadas para lograr un óptimo moldeado de los tejidos blandos. Una vez finalizada la fase de reparación de los tejidos de sostén, debe existir una vía mucosa o túnel mucoso de conexión del implante a la estructura secundaria o prótesis. El pilar de cicatrización se encarga de generar ese túnel mucoso, y para ello se debe colocar roscado sobre el implante.

Materia

Titanio grado V.

Destornillador

Torx.

Sugerencia de utilización

Torque máximo de apriete 10 Ncm. Un solo uso.

Pilar cicatrización

PLATAFORMA Ø	4.8 mm			PLATAFORMA Ø 6.5 mm			
H 1.5 mm	H 2 mm	H 3 mm	H 4.5 mm	H 1.5 mm	H 2 mm	H 3 mm	H 4.5 mm
2248H1	2248H2	2248H3	2248H4	2265H1	2265H2	2265H3	2265H4

Selección en la toma de impresión

Características generales

Disponibilidad para la técnica de cubeta abierta y cerrada.

Los tránsfers de impresión se suministran con su respectivo tornillo de retención: Para cubeta abierta tornillo largo. Para la cubeta cerrada tornillo corto.

Finalidad

Aditamento que, conexionado a la porción superior o coronal del implante en el interior de la cavidad bucal y fijado mediante un tornillo pasante de rosca, sirve para realizar la tránsferencia de la posición del implante en el medio biológico a un modelo de trabajo de laboratorio. Esto se consigue gracias al empleo de materiales de impresión que, colocados en una cubeta apropiada, endurecen dentro de la cavidad bucal. Una vez retirada la cubeta de la boca, unida a los tránsfers de impresión, se acoplan los análogos ayudándonos del tornillo de retención y posteriormente se realiza el vaciado en un material de escayola-yeso para obtener el modelo positivo donde quedará la réplica en la posición original que tiene el implante en boca.

Para cubeta cerrada

En el caso de la técnica de cubeta cerrada los tornillos de retención de los tránsfers no quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado habrá que retirar los tránsfers que se han quedado en boca y reposicionarlos manualmente en su hueco de origen dentro de la cubeta cerrada.

Para cubeta abierta

En el caso de la técnica de cubeta abierta los tornillos de retención de los tránsfers sí quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado los tránsfers quedarán atrapados en la cubeta por lo que no habrá que reposicionarlos manualmente.

Titanio grado V.

Destornillador

Torque máximo de apriete 10 Ncm.

Sugerencia de utilización

Un solo uso.

TRÁNSFER CUBETA CERRADA C/T					
Ø 4.8 mm	Ø 6.5 mm				
3248CC	3265CC				

TRÁNSFER CUBETA ABIERTA C/T					
Ø 4.8 mm	Ø 6.5 mm				
3248CA	3265CA				

Análogos

Finalidad

Aditamento destinado, por un lado, a suplir y reproducir la posición del implante en boca sobre un modelo de trabajo una vez realizada la tránsferencia mediante una toma de impresión, y por otro lado, a servir de modelo de conexión para la construcción en el laboratorio de la estructura de prótesis destinada a sustituir la(s) pieza(s) perdida(s).

Ø 4.8 mm	Ø 6.5 mm
42P48	42P65

Bases mecanizadas y UCLAS

Finalidad

Ambos aditamentos actúan como elemento directo al implante que una vez moldeado y colado sirve como estructura final del diente.

La utilización de las bases mecanizadas, garantizan un óptimo ajuste con la conexión del implante evitando posibles alteraciones procedentes del colado.

Contenido

Calcinable con base mecanizada de cromo cobalto con más tornillo retentivo de clínica.

Disponible también en Plexi Glass. Para plataforma Ø 4.8 mm: 5248CAR 5248CR Para plataforma Ø 6.5 mm: 5265CAR 5265CR

Material

Torreta: Plexi Glass.

Base mecanizada

Cromo cobalto.

Tornillo

Titanio grado V.

Plataformas

Ø 4.8 mm y Ø 6.5 mm.

Tipo de restauración

Para restaurar directo a implante.

Destornillador

Torque de apriete tornillo

35 Ncm como máximo.

Indicaciones

Base mecanizada antirrotatoria: indicada para coronas fijas atornilladas unitarias.

Base mecanizada rotatoria: indicada para restauraciones fijas multiples.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada. Mantenimiento en los controles clínicos.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio. La altura de la mucosa debe ser superior a la altura de la base mecanizada del pilar.

UCLA base mecanizada cromo cobalto

PLATAFORMA	Ø 4.8 mm	PLATAFORMA	PLATAFORMA Ø 6.5 mm		
5248BR	5248BAR	5265BR	5265BAR		
•					

Soluciones atornilladas anguladas

Finalidad

La solución BHS30, basada en una conexión llave-tornillo con capacidad de angulación de 0º a 30º, garantiza siempre la solución óptima a cada rehabilitación.
Esta tecnología aporta unas prestaciones mecánicas excepcionales, absoluta versatilidad y facilidad de uso, por lo que simplifica la labor protética al usuario y se adapta a sus necesidades, mejorando los costes del proceso y reduciendo la posibilidad de errores.

Contenido

Cada aditamento se comercializa por separado.

Indicaciones

Antirrotatorio:

indicado para coronas fijas atornilladas unitarias, en implantes con divergencia.

Rotatorio:

indicado para restauraciones fijas atornilladas múltiples, en implantes con divergencia.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes con una importante reducción del tiempo y de los costes en materiales para su confección.

BHS30 es compatible con las técnicas de colado, Sobrecolado y mecanizado, gracias a sus bases mecanizadas de Cromo Cobalto y de Titanio.

Chimeneas disponibles en 10º, 20º y 30º de angulación

Materia

Llave Inox. 17 4PH Stainless Steel Tornillo de Titanio grado V. Chimeneas de WIC (Resina Calcinable) Bases de Cromo Cobalto y Titanio grado V

Plataformas

4.8 mm

Tipo de rehabilitación

Atornillada

Destornillador

Conexión Cóncava Cuatrilobular

Torque de apriete tornillo

30 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

El sistema está diseñado para mejorar la estética y funcionalidad de las prótesis atornilladas

Unitaria Atornillada Angulada MB

TORNILLOS PARA PLATAFORMA Ø 4.8 mm		TORNILLOS PARA PILAR SYN		
CLÍNICA	LABORATORIO			
IP02011	IP02012	IP02013	IP02014	

CHIMENE	AS CALCINA	BLES									
PLATAFOR	RMA Ø 4.8 m	ım				PILAR SYN	N				
10°	20º	30°	10º	20º	30°	10º	20º	30º	10º	20º	30º
IP07050	IP07035	IP07020	IP07051	IP07036	IP07021	IP07052	IP07037	IP07022	IP07053	IP07038	IP07023

Soluciones atornilladas anguladas

PLATAFORMA Ø 4.8 mm				
BASE DE TITANIO				
IP03016	IP03017			

CHIMENEA CALCINABLE PARA BASES MECANIZADAS						
BASE DE TITANIO PARA	(COLADO + CEMENTAL	00)				
10º	20º	30º				
IP04023	IP04022	IP04021				

The Perfect Match

Tu éxito también es el nuestro

Cada uno de los envases de nuestros implantes Oxtein incluye no solo las indicaciones de uso que detallan la forma correcta de utilización de cada uno de ellos, sino que adicionalmente también contiene indicaciones prácticas para los pacientes que facilitarán el trabajo del clínico en el proceso de recuperación post-operatorio de sus pacientes.

Así mismo encontrará también en cada uno de ellos la carta de garantía de por vida de nuestros implantes, y por supuesto el pasaporte implantológico que podrá ofrecer a sus pacientes como certificado de trazabilidad.

Pilares tallables para cementar Pilares SYN para atornillar

Finalidad

Los pilares tallables para cementar y los pilares SYN para atornillar permiten una sincronización de ajuste óptima entre implante y pilar gracias a la mecanización del octógono en el centro de su zona cónica de 8°. La gran versatilidad que presenta el sistema, nos permite realizar distintos tipos de rehabilitación: unitarias, múltiples, atornilladas y cementadas, con la finalidad de utilizarlos como estructura final del diente.

Contenido

Todos los pilares y torretas van con su tornillo de retención.

Indicaciones para rehabilitaciones

Unitarias y múltiples atornilladas. Unitarias y múltiples cementadas.

Ventajas en la utilización

El cono de 8º permite una soldadura en frío entre pilar e implante, garantizando la reducción de la infiltración de fluidos en el interior del implante.

Material

Pilar tallable recto y tornillo: Titanio grado V.

Plataformas

Ø 4.8 mm y Ø 6.5 mm.

Instrumental de apriete

Destornillador Torx para: pilar SYN recto tallable y pilar SYN 3pz. Llave especial de apriete para: pilar SYN 1pz.

Torque de apriete pilares a implante 35 Ncm como máximo.

35 NCIII COITIO ITIAXIITIO.

Torque de apriete tornillo torretas SYN

15 Ncm como máximo.

Sugerencia de utilización

Para rehabilitaciones atornilladas:

Pilar SYN de una pieza: Una vez colocado con su torque de apriete y haber realizado las medidas de impresión, no se podrá extraer del implante.

En tal caso utilizar el tapón de cicatrización SYN para evitar que entren restos orgánicos en su interior.

Pilar SYN de 3 piezas: Éste otro pilar permite realizar la toma de impresión y extraer posteriormente el pilar del implante sin necesidad de repetir la toma de impresión.

Para rehabilitaciones cementadas:

Cuando el orificio de entrada del tornillo retentivo comprometa la estética de la rehabilitación, utilizar el pilar Syn recto tallable, éste actúa como elemento directo al implante.

Una vez tallada su parte superior se coloca su cofia plástica rotatoria o anti rotatoria tallándola al mismo nivel para encerar y realizar el colado.

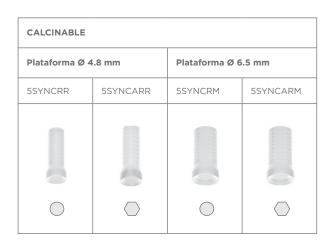
Pilares tallables para cementar

PLATAFORMA	Ø 4.8 mm		PLATAFORMA	Ø 6.5 mm	
Pilar recto	Calcinable ho	mbro recto	Pilar recto	Calcinable ho	mbro recto
6248	6248CR	6248CAR	6265	6265CR	6265CAR
\Diamond		\bigcirc			

Pilares SYN para atornillar

PLATAFORMA	Ø 4.8 mm	PLATAFORMA Ø 6.5 mm
1 pieza	3 piezas	3 piezas
SYN481P	SYN483P	SYN653P

Tapón de cicatrización SYN


Tránsfer SYN

PARA CUBETA ABIERTA					
Plataforma ø 4.8 mm	Plataforma ø 6.5 mm				
32SYN48	32SYN65				

Análogo SYN

Torreta SYN

LLave para pilar SYN 1PZ.

Pilares tallables angulados

Finalidad

Actúa como elemento directo al implante. Una vez tallada su parte superior se coloca su calcinable de hombro rotatorio para encerar y realizar el colado corrigiendo la divergencia de la colocación de los implantes. A continuación, se atornilla y se cementa la corona definitiva al pilar como estructura final del diente.

Contenido

Pilar tallable angulado más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias, múltiples cementadas.

Permite la corrección en implantes divergentes, nivela las alturas de emergencia de las coronas en relación a los dientes adyacentes y permite una perfecta adaptación en distintos espesores de tejido blando.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes.

Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Materia

Pilar tallable angulado y tornillo: Titanio grado V.

Plataformas

Ø 4.8 mm y Ø 6.5 mm.

Destornillador

Torx

Torque de apriete tornillo

35 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

Una vez tallada su parte superior se aconseja utilizar su calcinable de hombro rotatorio. Éste una vez asentado y posicionado, se encera y se procede a realizar el colado.

Disponibilidad de angulaciones 15° y 20°.

Pilar tallable angulado

PLATAFORMA Ø 4.8 mm			PLATAFORMA Ø 6.5 m		
Pilar		Calcinable de hombro	Pilar	Calcinable de hombro	
15°	20°	nombro	15°	20°	nombro
724815	724820	7248CANG	726515 726520		7265CANG

Pilares de bola

Finalidad

Pilar base para la reconstrucción protésica sobredentaduras implanto-muco-soportadas sobre bolas, para maxilares inferiores.

Indicaciones

Indicados en sector anterior mandibular para prótesis completas, sobre un mínimo aconsejado de cuatro pilares de bola. El casquillo metálico se ubica en la prótesis y contiene en su interior la retención de teflón.

Aditamentos complementarios no incluidos

Cazoleta titanio + Retención teflón.

Ventajas en la utilización

Permiten una angulación máxima de 25° a 30°.

Recomendaciones

No utilizar en maxilar superior. Se recomienda la colocación mínima de 4 implantes en maxilares inferiores.

Materia

Pilar y casquillo de Titanio grado V, y retención de teflón.

Plataformas

Ø 4.8 mm.

Torque de apriete

35 Ncm.

Pilar de bola

CÁPSULA METÁLICA	RETENCIÓN DE TEFLÓN	
82RCM	82RTF	

Notas

- Diámetro de la bola 2.30 mm Disponibilidad de alturas 1.0 mm, 2.0 mm y 3.0 mm.
- Realizar revisiones periódicamente para el mantenimiento y la sustitución de los teflones.

Pilares LOCX®

Finalidad

Sistema de anclaje supragingival de eje resiliente para sobredentaduras sobre implantes. Consta de dos elementos: uno metálico que se atornilla directo a implante y una cazoleta metálica que va colocada en la prótesis, y contiene la retención de nylon según selección.

Contenido

Pilar LOCX*, posicionador/tránsfer de impresión, cazoleta de titanio, espaciador, retenciones: negra, azul, rosa, transparente y roja.

Aditamentos complementarios no incluidos en los sets

Retención de color naranja y verde.

Indicaciones

El sistema de anclaje "LOCX", está diseñado para la retención en dentaduras completas / parciales en implantes situados en la mandíbula o maxilar.

Se recomienda un mínimo de 2 implantes en mandíbula.

Se recomienda un mínimo de 4 implates en el maxilar superior. Las retenciones con centrador color (transparente, azul y rosa) corrigen una divergencia de 10° por pilar, a diferencia, las retenciones sin centrador (roja, naranja y verde) corrigen una divergencia de 20° por pilar.

La retención de color negro se utiliza exclusivamente para el proceso del rebase en clínica/laboratorio.

Ventajas en la utilización

Mayor versatilidad en la corrección de angulaciones y durezas en las retenciones.

Materia

Pilar y cazoleta de Titanio grado V, retenciones de nylón.

Plataformas

Ø 4.8 mm.

Torque de apriete 35 Ncm.

Contraindicaciones relativas de uso

En aquellos tratamientos donde se requiera una conexión rígida total.

En implantes con divergencias superiores a 20° respecto a la vertical.

Espacio protésico reducido.

Pacientes bruxistas.

Está contraindicado el uso de los aditamentos LOCX" en pacientes que presenten alergia o sean hipersensibles a los materiales en que se fabrican los mismos.

Recomendaciones

En la medida de lo posible es aconsejable dejar expuesto supragingival el pilar aprox. 1.5 mm, para evitar las presiones de las retenciones.

Se recomienda realizar la prótesis en el laboratorio para obtener un óptimo acabado de la misma. Se debe polimerizar la resina para endurecerla y eliminar los monómeros para evitar irritaciones en la mucosa.

Notas

- Se recomienda realizar controles periódicos al paciente hasta conseguir un óptimo ajuste entre el tejido blando y la prótesis.
- Realizar revisiones periódicamente para el mantenimiento y la sustitución de las retenciones.

Pilares LOCX®

	PLATAFORMA Ø 4.8 mm							
	H1	H2	Н3	H4	H5			
1.8	9248H1	9248H2	9248H3	9248H4	9248H5			
	No. of the same	ann.	reme					

Retenciones LOCX®

RETENCIONES									
			Divergen hasta 10°			Divergen hasta 20°			
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra 0 Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9R00L	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
				•					

Instrumental LOCX®

Aditamentos LOCX®

Oxtein M8 Soluciones CAD CAM

Scan Body

Finalidad

Aditamento utilizado como elemento de medición para transferir virtualmente la posición del implante en el modelo de trabajo o directo desde boca, y así posteriormente proceder a la elaboración de la prótesis personalizada implantosoportada vía CAD CAM. También denominado localizador o marker.

Contenido

Scan body más tornillo retentivo.

Elementos complementarios no incluidos

Biblioteca digital correspondiente a la conexión.

Indicaciones

Realización de estructuras implantosoportadas directas a implante o transepiteliales. Colocación en boca para la toma de impresión intraoral en clínica, o colocación en el modelo de trabajo para escaneado de éste en laboratorio. Recomendable utilizar tantos scan bodies como implantes haya en la restauración para obtener mayor precisión y rapidez.

Ventajas en la utilización

Fácil lectura, sin necesidad de sprays. Sistema compatible con los principales softwares cad:

- 3shape.
- Exocad.
- Dental Wings.

Sugerencia de uso

En su uso en clínica o en boca, tener en cuenta la altura de la encía, ya que podría dificultar la lectura óptima del localizador.

Material

Scan Body Peek. Tornillo Titanio Grado V.

Tipo de destornillador

Torque de apriete tornillo

Scan Bodies

SYN							
Plataforma Ø 4.8 mm		Plataforma Ø 6.5 mm					
Longitud 8.5 mm Longitud 10 mm		Longitud 8.5 mm	Longitud 10 mm				
CLSYN48I	CLSYN48I CLSYN48		CLSYN65				

Análogo para impresora 30

IMPLANTE	
Plataforma Ø 4.8 mm	Plataforma Ø 6.5 mm
42P483D	42P653D

SYN	
Plataforma Ø 4.8 mm	Plataforma Ø 6.5 mm
42SYNR3D	42SYNM3D

Oxtein M8 Soluciones CAD CAM

Interfases

Finalidad

Elemento directo al implante que una vez cementado a la corona o puente sirve como estructura final de la restauración.

Contenido

Interfase más tornillo retentivo.

Indicaciones

Interfase antirrotatoria: Indicada para coronas fijas atornilladas unitarias. Interfase rotatoria: Indicada para restauraciones fijas múltiples, o sobredentaduras.

Utilizar junto al scan body y biblioteca digital correspondiente para la fabricación de la prótesis definitiva.

Ventajas en la utilización

Garantiza un ajuste óptimo a la conexión del implante. Mejor distribución de las cargas.

Contraindicaciones de uso

En casos de espacio oclusal muy limitado.

Material

Interfases y tornillo: Titanio Grado V.

Tipo de destornillador

Torque de apriete tornillo 30 Ncm máximo.

Transepiteliales: 15 Ncm.

Interfases

SYN		
Plataforma Ø 4.8 mm	Plataforma Ø 6.5 mm	
CISYNSR	CISYNMR	

Oxtein M8 Tornillos

Tornillos M8

RETENCIÓN PRÓTESIS CLÍNICA / INTERFASES /SCAN BODY	RETENCIÓN SYN
12TR20	12TRSYN

Oxtein L35

Contenido

11.1hrailre axreill 233**********************************	401
Secuencia de fresado	136
Sets quirúrgicos	138
Instrumental	140
Protocolo quirúrgico	146
Soluciones Protésicas	150
Pilar de cicatrización	158
Tránsfer de impresión	160
Análogo	162
Bases mecanizadas y UCLAS	164
UCLAS de titanio	16E
Pilares provisionales de peek	16E
Soluciones atornilladas anguladas	168
Pilares tallables rectos	172
Pilares tallables angulados	174
Pilares de bola	176
Pilar LOCX	178
Pilares transepiteliales	182
Soluciones CAD CAM	188
Scan body	188
Interfases	190
Tornillos	192

Oxtein L35

Especialmente diseñado para obtener una óptima estabilidad primaria en huesos de baja densidad.
Su perfil de rosca ha sido diseñado para simular un expansor óseo, con la finalidad de compactar el hueso en todo su perímetro. Su doble espira reduce las vueltas de inserción y minimiza el riesgo de sobrecalentamiento en el hueso.

Titanio

Grado V ELI-2.

Tratamiento superficial Oxigenna[®]

"Surface argón system".

Conexión

Hexágono interno.

Plataformas

Ø 3.5 mm.

Tornillo de cierre

autorroscante con forma helicoidal

Incluido y codificado por color.

Conexión
hexagonal interna

Platform Switching
Respeto del ancho biológico.

Microespiras coronales
Para obtener una mayor superficie
de contacto con el hueso.

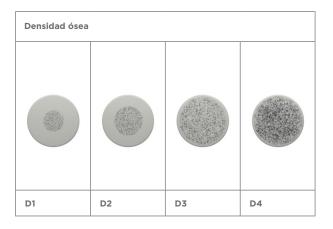
Apice radial y

Morfología cilíndrica

Transportador 3 en 1

- 1. Transportador.
- 2. Transfer de impresión para cubeta cerrada.
- 3. Pilar tallable o fresable para cementar o cemento-atornillar con codificación de color identificativo del diámetro del implante.

REFERENCIAS SISTEMA TRANSPORTADOR								
Ø vs H	Ø 3.3 mm	■Ø 3.75 mm	■Ø 4.25 mm	■Ø 5.0 mm				
H 6.0 mm	_	L353706T	L354206T	L355006T				
H 8.5 mm	L353308T	L353708T	L354208T	L355008T				
H 10.0 mm	L353310T	L353710T	L354210T	L355010T				
H 11.5 mm	L353311T	L353711T	L354211T	L355011T				
H 13.0 mm	L353313T	L353713T	L354213T	L355013T				
H 14.5 mm	L353314T	L353714T	L354214T	_				
Plataforma Conexión	Ø 3.5 mm	Ø 3.5 mm						
Collexion								



Oxtein L35 Secuencia de fresado

Secuencia detallada paso a paso

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa final Ø 2.75 mm para implante de Ø 3.3 mm a 750 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 3.1 mm a 750 r.p.m.
- 4 Fresa final Ø 3.1 mm para implante de Ø 3.75 mm a a 750 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 3.6 mm a 650 r.p.m.
- Fresa final Ø 3.6 mm para implante de Ø 4.25 mm a a 650 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 4.1 mm a 550 r.p.m.
- 6 Fresa intermedia Ø 4.1 mm a 550 r.p.m.
- 7 Fresa final Ø 4.4 mm para implante de Ø 5.0 mm a a 450 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 4.8 mm a 450 r.p.m.

Recomendaciones importantes

Utilizar irrigación abundante.

No sobrepasar los 35-45 Ncm, en la inserción del implante. Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso..

Fresas para huesos duros

Se recomienda pasar el Ø de la siguiente fresa de la secuencia, para la colocación de implantes cilíndricos en huesos de densidades D1 y D2.

Disponibles en conexión a llave carraca dinamométrica.

Secuencia para implante de Ø 3.3 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.75 mm a 750 r.p.m.
- 4 En caso de huesos con densidades D1 y D2 pasar la fresa Ø 3.1 mm a 750 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4
3.3 mm	D1 - D2	•	•	•	•
	D3 - D4	•	•	•	

Secuencia para implante de Ø 3.75 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.75 mm a 750 r.p.m.
- **4** Fresa final Ø 3.1 mm a 750 r.p.m.
- **5** En caso de huesos con densidades D1 y D2 pasar la fresa Ø 3.6 mm a 650 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5
3.75 mm	D1 - D2	•	•	•	•	•
	D3 - D4	•	•	•	•	

Secuencia para implante de Ø 4.25 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.75 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- 5 Fresa final Ø 3.6 mm a 650 r.p.m.
- 6 En caso de huesos con densidades D1 y D2 pasar la fresa Ø 4.1 mm a 550 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5	6
4.25 mm	D1 - D2	•	•	•	•	•	•
	D3 - D4	•	•	•	•	•	

Secuencia para implante de Ø 5.0 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- **5** Fresa Ø 3.6 mm a 650 r.p.m.
- **6** Fresa Ø 4.1 mm a 550 r.p.m.
- 7 Fresa intermedia Ø 4.1 mm a 550 r.p.m.
- **8** En caso de huesos con densidades D1 y D2 pasar la fresa Ø 4.8 mm a 450 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7	8
5.0 mm	D1 - D2	•	•	•	•	•	•	•	•
	D3 - D4	•	•	•	•	•	•	•	

Oxtein L35 Sets quirúrgicos

Set plus

YUSQP - Set quirúrgico plus incluye:				
YUCRD	Llave carraca fija y dinamométrica de titanio			
YULLA	Llave acodada de extremo abierto			
YUMED	Medidor universal			
IP2253 + YUDCRC	Mango atornillador + Atornillador 1.25 corto conexión carraca			
YUDCRL	Atornillador 1.25 largo conexión carraca			
YUDCA	Atornillador 1.25 conexión C/A			
YUAM	Adaptador manual			
YUACRL	Adaptador carraca largo			
YUACAC	Adaptador C/A corto			
YUACAL	Adaptador C/A largo			
IP2255	Prolongador / Extensor			
YUFRL	Fresa lanceolada			
YNFR23L	Fresa cónica piloto larga con tope Ø 2.35 mm			
YNFR27L	Fresa cónica larga con tope Ø 2.7 mm			
YNFR31L	Fresa cónica larga con tope Ø 3.1 mm			
YNFR35L	Fresa cónica larga con tope Ø 3.5 mm			
YNFR40L	Fresa cónica larga con tope Ø 4.0 mm			
YNFR45L	Fresa cónica larga con tope Ø 4.5 mm			
YLFR23L	Fresa cilíndrica piloto larga con tope Ø 2.3 mm			
YLFR27L	Fresa cilíndrica larga con tope Ø 2.75 mm			
YLFR31L	Fresa cilíndrica larga con tope Ø 3.1 mm			

YLFR36L	Fresa cilíndrica larga con tope Ø 3.6 mm
YLFR41L	Fresa cilíndrica larga con tope Ø 4.1 mm
YLFR44L	Fresa cilíndrica larga con tope Ø 4.4 mm
YLFR48L	Fresa cilíndrica larga HD Ø 4.8 mm
Y1MR35C	Macho de roscar carraca Ø 3.5 mm para M12
Y1MR40C	Macho de roscar carraca Ø 4.0 mm para M12
Y1MR45C	Macho de roscar carraca Ø 4.5 mm para M12
Y1MR50C	Macho de roscar carraca Ø 5.0 mm para M12
YNMR35	Macho de roscar carraca Ø 3.5 mm para N6
YNMR40	Macho de roscar carraca Ø 4.0 mm para N6
YNMR50	Macho de roscar carraca Ø 5.0 mm para N6
Y1DRMQC	Driver mecánico directo a implante M12 corto Ø 2.82 mm
Y1DRMLC	Driver mecánico directo a implante M12 corto Ø 3.80 mm
Y3DR33	Driver mecánico directo a implante L6 2.3 x 1.0
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7x0.7
Y56DR	Driver mecánico directo a implante L35
YUTFRH60	Tope H 6 para fresas
YUTFRH85	Tope H 8.5 para fresas
YUTFRH10	Tope H 10 para fresas
YUTFRH11	Tope H 11.5 para fresas
YUTFRH13	Tope H 13 para fresas
YUTFRH14	Tope H 14.5 para fresas

Set basic

YLSQB - Set basic L incluye:				
YUAM	Adaptador manual			
YUACRL	Adaptador carraca largo			
YUACAC	Adaptador C/A corto			
YUDML	Atornillador fijo 1.25 largo manual			
IP2255	Prolongador / Extensor			
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7x0.7			
Y56DR	Driver mecánico directo a implante L35			
YLMP2327	Medidor prof. / paralelizador Ø 2.3 mm / 2.7 mm			

YLMP3136	Medidor prof. / paralelizador Ø 3.1 mm / 3.6 mm
YUFRL	Fresa lanceolada
YLFR23C	Fresa cilíndrica corta Ø 2.3 mm
YLFR27C	Fresa cilíndrica corta Ø 2.75 mm
YLFR31C	Fresa cilíndrica corta Ø 3.1 mm
YLFR36C	Fresa cilíndrica corta Ø 3.6 mm
YLFR41C	Fresa cilíndrica corta Ø 4.1 mm
YLFR44C	Fresa cilíndrica corta Ø 4.4 mm
YLFR48C	Fresa cilíndrica corta Ø 4.8 mm

Importante

Longitud máxima de colocación de implante con las fresas incluidas en el set basic: 13.0 mm.

Oxtein L35 Instrumental

Fresa lanceolada

Fresa corta

FRESA PILOTO CORTA CILÍNDRICA	FRESA QUIRÚRGICA CORTA CILÍNDRICA					
Ø 2.3 mm	Ø 2.75 mm	Ø 3.1 mm	Ø 3.6 mm	Ø 4.1 mm	Ø 4.4 mm	Ø 4.8 mm
YLFR23C	YLFR27C	YLFR31C	YLFR36C	YLFR41C	YLFR44C	YLFR48C

Fresa larga

FRESA PILOTO LARGA CILÍNDRICA	FRESA QUIRÚRGICA LARGA CILÍNDRICA					
Ø 2.3 mm	Ø 2.75 mm	Ø 3.1 mm	Ø 3.6 mm	Ø 4.1 mm	Ø 4.4 mm	Ø 4.8 mm
YLFR23L	YLFR27L	YLFR31L	YLFR36L	YLFR41L	YLFR44L	YLFR48L

Tope fresas largas

H 6.0 mm	H 8.5 mm	H 10.0 mm	H 11.5 mm	H 13.0 mm	H 14.5 mm
YUTFRH60	YUTFRH85	YUTFRH10	YUTFRH11	YUTFRH13	YUTFRH14

Oxtein L35 Instrumental

Bisturí circular de conexión contra ángulo

Ø 3.3 mm	Ø 3.5 mm	Ø 3.75 mm	Ø 4.0 mm	Ø 4.25 mm	Ø 4.5 mm	Ø 4.8 mm	Ø 5.0 mm
IP5277A	IP5286A	IP5279A	IP5280A	IP5282A	IP5285A	IP5287A	IP5283A
55.0	0.30	0.00	0.00	8277.0	0.4.0	0.48	0.00

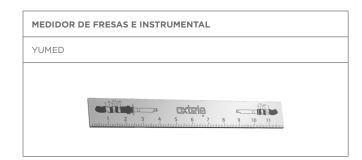
Medidor de profundidad y pin de paralelismo

Ø 2.3 / Ø 2.75 mm	Ø 3.1 / Ø 3.6 mm
YLMP2327	YLMP3136

Driver

Prolongador de fresas

Adaptador


MANUAL	CARRACA CORTO	CARRACA LARGO	CONTRA-ÁNGULO CORTO	CONTRA-ÁNGULO LARGO
YUAM	YUACRC	YUACRL	YUACAC	YUACAL

Oxtein L35 Instrumental

Llaves

LLAVE DE EXTREMO ABIERTO	LLAVE CARRACA DE TITANIO FIJA Y DINAMOMÉTRICA (20 A 55 Ncm.)
YULLA	YUCRD
axteia	

Medidor

Punta atornillador

MANUAL INTERCAMBIABLE CONEXIÓN CARRACA			MANUAL FIJO		MECÁNICO
Larga	Media	Corta	Larga	Corta	Media
YUDCRL	YUDCRM	YUDCRC	YUDML	YUDMC	YUDCA

Juntas para instrumental 10 unidades

Bone mill

Recto	Recto y divergente
YIBM35	YIBM35AN

Oxtein L35 Protocolo quirúrgico

Preparación de los tejidos blandos y de la zona cortical

¹ Con bisturí circular

Se inicia la secuencia quirúrgica con el bisturí circular correspondiente al Ø de implante planificado a una velocidad de giro de 350 r.p.m.

Una vez realizado el corte, se extrae el tejido blando sobrante mediante periostotomo y/o pinza.

Se recomienda el uso de una férula quirúrgica para continuar con la osteotomía.

² Con incisión de colgajo

Se inicia la incisión levantando el colgajo con la ayuda de separadores gingivales.

Se recomienda el uso de una férula quirúrgica una vez haya acceso a la cresta ósea.

En casos de encontrar crestas óseas estrechas, se aconseja regularizarla para aumentar la anchura vestíbulo-lingual o palatina.

³ Secuencia quirúrgica inicial con fresa lanceolada

Se inicia la secuencia con la fresa lanceolada, con una velocidad de giro de 850 r.p.m, hasta traspasar la cortical ósea centralizando el eje para las siguientes osteotomías.

Se insertará por la guía de la férula quirúrgica en caso de usarse ésta.

Importante

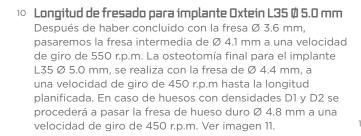
Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso.

Es necesario abundante irrigación en todas las osteotomías y procesos hasta la inserción del implante.

Para una mayor seguridad se recomienda el uso de los topes de fresas.

Preparación del lecho óseo

Después de haber finalizado la preparación de la zona gingival y cortical, se procede a realizar la osteotomía con la fresa piloto de Ø 2.30 mm a una velocidad de giro de 850 r.p.m hasta la longitud planificada.



Secuencia final

³ Longitud de fresado para implante Oxtein L35 Ø 3.3 mm
Después de haber concluido la fase anterior, se procede a realizar la osteotomía final para el implante L35 Ø 3.3 mm, se realiza con la fresa de Ø 2.75 mm con una velocidad de giro de 750 r.p.m profundizando hasta la longitud planificada. En caso de huesos con densidades D1 y D2 se procederá a pasar la siguiente fresa Ø 3.1 mm a una velocidad de giro de 750 r.p.m.

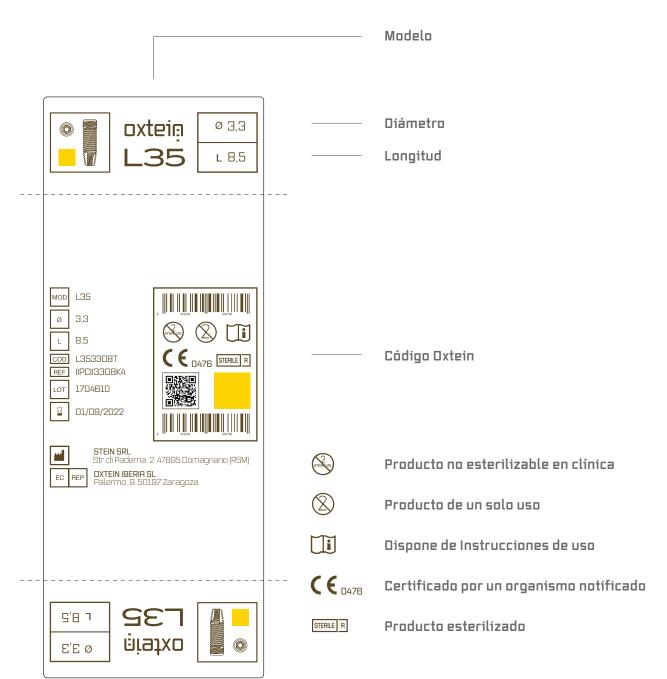
Después de haber realizado las primeras osteotomías con las fresas correspondientes, se debe insertar el medidor de profundidad/paralelizador para comprobar la longitud de fresado y paralelismo obtenido. Ver imágenes 2, 4, 6 y 8.

Oxtein L35 Protocolo quirúrgico

Proceso de inserción del implante Oxtein L35 con transportador

- 1 Abrir la caja del implante con guantes de nitrilo por la zona troquelada.
- 2 Extraiga la bandeja en la que está depositado el blíster del implante.
- 3 Posteriormente, en condiciones estériles, desprecintar el blíster por la esquina no redondeada hasta liberar el vial de plástico con el tapón de titanio que hay en su interior.
- 4 Depositar el vial en campo estéril sin tocarlo con los guantes.
- 5 Seguidamente retirar el tapón de titanio que va a presión. (No desecharlo ya que incluye el tornillo de cierre).
- **6** Extraer axialmente del interior del vial el soporte plástico dónde se encuentra el implante con su transportador.
- 7 No tocar el implante con los guantes para evitar su contaminación y sujetando firmemente el soporte plástico, acoplar los hexágonos del transportador y del adaptador con movimiento rotacional y axial hasta oír un clic.
- 8 Una vez conexionado, extraer el implante de su soporte con un ligero movimiento ascendente.
- **9** Finalmente llevar el implante a boca para iniciar su inserción.

Importante


Antes de proceder a realizar la inserción del implante, leer detenidamente las instrucciones de uso.

No sobrepasar los 45 Ncm en la inserción del implante.

The Perfect Match

Ponemos la información a tu alcance

La etiqueta exterior de los implantes Oxtein fue diseñada para facilitar la rápida identificación de todas las características relevantes de cada una de ellos lo que le garantiza tener el correcto conocimiento del contenido antes de proceder a abrir el envase.

3.5

Plataforma 3.5 mm

Análogos

		TRANSEPITE	LIAL	PILAR LOCX®	3D		
.5	4IP35	MUU4R	MUU4AR	9U4	4IP353D	MUU4R3D (Transep)	MUU4AR3D (Transep)
	(retr						

Tránsfer de impresión

DIRECTOS A I	ECTOS A IMPLANTE			TRANSEPITELIAL	
сс	CA		CA		CA
3ICC	3ICA	3ICA3P	MUU3CAR	MUU3CAAR	9U3
ji	* [111			

Pilares de cicatrización

		TRANSEPITELIAL
3.5	2I35H3	MUIEPLN
3.5	2135H5	
3.5	2l35H7	
		45

Unitaria

	ATORNILLADA					
	UCLA			Provisional	Transepitelial	
	Calcinable	Base mecanizada	Titanio		Recto	
	5135CAR	5135BAR	5135TAR	PKIAR	MUIH1	
					MUIH2	
3.5					MUIH3	
					MUIH4	
	I	· I		I		
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

	ATORNILLADA						
	ADITAMIENTOS TRANSEPITELIALES						
	Calcinable Titanio Provisional Peek						
4.8	MUIECAR	MUIETAR	MUIEPKAR				
	\bigcirc	\bigcirc	\bigcirc				

Unitaria Atornillada Angulada L35

Unitaria Atornillada Angulada L35

	CILÍNDRO CALCINABLE					
	10°	20º	30º			
3,5 IP07077		IP07075	IP07073			
		-	•			
	\bigcirc	\bigcirc	\bigcirc			

	CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)			CHIMENEA CALCINABLE (COLADO + CEMENTADO)		
	10º	20º	30º	10º	20º	30º
	IP04058	IP04057	IP04056	IP04061	IP04060	IP04059
		1				
	Ва	ase Cromo Cob	alto		Base TI	
,5		IP03050			IP03048	
		1				

Unitaria / Múltiple

	CEMENTADA				
	Pilar recto		Pilar angulado		
	H2 mm	H4 mm	15°	25°	
3.5	6IH2	6IH4	7115	7125	
	Į į	• I			
	\bigcirc		\bigcirc	\bigcirc	

Múltiple

Múltiple Atornillada Angulada L35

TORNILLOS		
IP02021 (Tor. Clínica)	IP02022 (Tor. Lab.)	

	CILÍNDRO CALCINABLE						
	10º	20º	30º				
3,5	IP07078	IP07076	IP07074				
		/					
	0						

				CHIMENEA CALCINABLE (COLADO + CEMENTADO)				
	10º	20º	30º	10º	10º 20º 30º			
	IP04058	IP04057	IP04056	IP04061	IP04060	IP04059		
		1			1	1		
	Base Cromo Cobalto		Base TI					
3,5		IP03051			IP03049			

Plataforma 3.5 mm

Múltiple

	ATORNILLADA								
	Transepitelial recto								
	H1 mm	H2 mm	H3 mm	H4 mm					
3.5	MUIH1	MUIH2	MUIH3	MUIH4					
	*								

	ATORNILLADA	
	Transepitelial angulado	
	17°	30°
3.5	MUI17	MUI30

Aditamentos transepiteliales Calcinable Titanio Provisional Peek 4.8 MUIECR MUIETR MUIEPKR		ATORNILLADA								
		Aditamentos transepiteliales								
4.8 MUIECR MUIETR MUIEPKR		Calcinable	Titanio	Provisional Peek						
	4.8	MUIECR	MUIETR	MUIEPKR						

Transepitelial

	TORNILLOS			
8	IP02003 (Tor. Clínica)	Ω	IP02004 (Tor. Lab.)	•
				T

Múltiple atornillada para Transepitelial L35

	CILÍNDRO CALCINABLE							
	10º	20º	30º					
4.8	IP07009	IP07006	IP07003					
	1	1	1					
		0						

	(SOBRECOLADO O COLADO + SOLDADURA)			CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
			10º	20º	30°		
	IP04010	IP04006	IP04002	IP04012	IP04008	IP04004	
					1		
	Ва	ase Cromo Cob	alto		Base TI		
4.8	IP03008			IP03009			
	3 IP03008						

Sobredentadura

	PILAR DE BOLA		RETENCIONES					
	H2 mm	H4 mm	8RAM	8ROR	8RCM	8RTF		
3.5	8IH2	8IH4						

RETENCIONES									
			Divergen ha	sta 10°			Divergen ha	sta 20°	
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra O Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9ROOL	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
	0			•		0			

CAD CAM

	SCAN BODY					INTERFASE				
	Longitud 8.5 mm	Longitud 10 mm	Transepit	elial			Directo a implante		Transepitelial	
	0.5	10 11111	Longitud	8.5 mm	Longitud	10 mm				
3.5	CL35I	CL35	CLMURI	CLMUARI	CLMUR	CLMUAR	CII35R	CII35AR	CIMUR	CIMUAR
	Ŧ	T T							FR T	
	*						*			
	\bigcirc							\bigcirc		

The Perfect Match

Tu éxito también es el nuestro

Cada uno de los envases de nuestros implantes Oxtein incluye no solo las indicaciones de uso que detallan la forma correcta de utilización de cada uno de ellos, sino que adicionalmente también contiene indicaciones prácticas para los pacientes que facilitarán el trabajo del clínico en el proceso de recuperación post-operatorio de sus pacientes.

Así mismo encontrará también en cada uno de ellos la carta de garantía de por vida de nuestros implantes, y por supuesto el pasaporte implantológico que podrá ofrecer a sus pacientes como certificado de trazabilidad.

Pilar de cicatrización

Características generales

Una vez finalizada la fase de reparación de los tejidos de sostén, debe existir una vía mucosa o túnel mucoso de conexión del implante a la estructura secundaria o prótesis. El pilar de cicatrización se encarga de generar ese túnel mucoso, y para ello es colocado roscado sobre el implante.

Pilar cicatrización anatómico

Material

Titanio grado V.

Destornillador

Hexagonal de 1.25 mm.

Sugerencia de utilización

Torque máximo de apriete 10 Ncm Un solo uso.

PLATAFORMA Ø 3.5 mm						
НЗ	H5	Н7				
2I35H3	2I35H5	2l35H7				

The Perfect Match

Conexiones precisas

Nuestras conexiones hexagonales internas paralelas, estarán pensadas para ofrecer un óptimo ajuste entre implante y aditamento protésico, tanto en rotación como en ajuste axial.

Su pequeño chaflán inicial en la zona interna de la conexión, está diseñado y pensado para evitar la infiltración de restos biológicos.

Tránsfer de impresión

Características generales

Disponibilidad para la técnica de cubeta abierta y cerrada.

Los tránsfers de impresión se suministran con su respectivo tornillo de retención: Para cubeta abierta tornillo largo.

Para la cubeta cerrada tornillo corto.

Finalidad

Aditamento que, conexionado a la porción superior o coronal del implante en el interior de la cavidad bucal y fijado mediante un tornillo pasante de rosca, sirve para realizar la transferencia de la posición del implante en el medio biológico a un modelo de trabajo de laboratorio. Esto se consigue gracias al empleo de materiales de impresión que, colocados en una cubeta apropiada, endurecen dentro de la cavidad bucal. Una vez retirada la cubeta de la boca, unida a los tránsfers de impresión, se acoplan los análogos ayudándonos del tornillo de retención y posteriormente se realiza el vaciado en un material de escayola-yeso para obtener el modelo positivo donde quedará la réplica en la posición original que tiene el implante en boca.

Para cubeta cerrada

En el caso de la técnica de cubeta cerrada los tornillos de retención de los tránsfers no quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado habrá que retirar los tránsfers que se han quedado en boca y reposicionarlos manualmente en su hueco de origen dentro de la cubeta cerrada.

Para cubeta abierta

En el caso de la técnica de cubeta abierta los tornillos de retención de los tránsfers sí quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado los tránsfers quedarán atrapados en la cubeta por lo que no habrá que reposicionarlos manualmente.

Material

Titanio grado V.

Destornillador

Hexagonal de 1.25 mm.

Torque máximo de apriete 10 Ncm

Sugerencia de utilización Un solo uso.

TRÁNSFER CUBETA CERRADA

Ø 4.8 mm

3ICC

Una impresión perfecta en implantes divergentes

Finalidad

En el caso de divergencia severa entre implantes o entre implantes y dientes adyacentes, es recomendable utilizar la técnica de cubeta abierta con el transfer de impresión de tres piezas con el fin de evitar deformación en la silicona en el momento de su extracción.

Tránsfer de impresión 3 pz.

Una óptima solución para realizar la toma de impresión en implantes divergentes de conexión interna sin dañar ni forzar la silicona. Gracias a su casquillo interno removible se puede extraer el cuerpo del tránsfer de impresión adherido a la cuberta sin ningún tipo de esfuerzo.

Análogo

Finalidad

Aditamento destinado por un lado a suplir y reproducir la posición del implante en boca sobre un modelo de trabajo una vez realizada la transferencia mediante una toma de impresión, y por otro a servir de modelo de conexión para la construcción en el laboratorio de la estructura de prótesis destinada a sustituir la(s) pieza(s) perdida(s).

Bases mecanizadas y UCLAS

Finalidad

Ambos aditamentos actúan como elemento directo al implante que una vez moldeado y colado sirve como estructura final del diente.

La utilización de las bases mecanizadas, garantizan un óptimo ajuste con la conexión del implante evitando posibles alteraciones procedentes del colado.

Contenido

Calcinable con base mecanizada de cromo cobalto más tornillo retentivo de clínica.

Disponible también en Plexi Glass. 5I35CAR 5135CR.

Material

Torreta: Plexi Glass.

Base mecanizada:

Cromo cobalto.

Tornillo

Titanio grado V.

Plataformas

Ø 3.5 mm.

Tipo de restauración

Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

30 Ncm como máximo

Indicaciones

Base mecanizada antirrotatoria: indicada para coronas fijas atornilladas unitarias.

Base mecanizada rotatoria: indicada para restauraciones fijas múltiples.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada. Mantenimiento en los controles clínicos.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio. La altura de la mucosa debe ser superior a la altura de la base mecanizada del pilar.

UCLA base mecanizada cromo cobalto

PLATAFORMA Ø 3.5 mm		
5135BR	5135BAR	

UCLAS de titanio

Finalidad

Actúa como elemento directo al implante. Una vez fresada su parte superior se encera para realizar el colado. Posteriormente se cementa al pilar y se atornilla como estructura final del diente.

Contenido

Pilar UCLA de titanio más tornillo retentivo de clínica.

Indicaciones

Antirrotatorio: Indicado para coronas fijas atornilladas unitarias.

Rotatorio: Indicado para restauraciones fijas múltiples, o sobredentaduras.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada.

Material

Pilar y tornillo: Titanio grado V.

Plataformas

3.5 mm.

Tipo de restauración

Atornillada. Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

30 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio.

Pilar UCLA titanio

PLATAFORMA Ø 3.5 mm		
5I35TR	5I35TAR	
	\bigcirc	

Pilares provisionales de peek

Finalidad

Actúan como elemento temporal directo al implante. Una vez moldeada su parte superior sirve como estructura provisional del diente.

Contenido

Pilar provisional de peek más tornillo retentivo de clínica.

Indicaciones

Pilar provisional de Peek Antirrotatorio: Indicado para coronas fijas atornilladas unitarias.

Pilar provisional de Peek Rotatorio: Indicado para restauraciones fijas múltiples.

Ventajas en la utilización

Los pilares provisionales nos dan a conocer si el tratamiento se ajustará a las necesidades del paciente, estableciendo un factor aproximado de la futura rehabilitación a realizar.

Material

Pilar: Peek. Tornillo: Titanio grado V.

Plataformas

3.5 mm.

Tipo de restauración

Provisional atornillada.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

10 Ncm.

Contraindicaciones de uso

En aquellos casos en los que se pueda ver comprometida la planificación de la carga/estética inmediata.

Nota

No utilizar durante un tiempo superior a 90 días.

Pilares provisionales de peek

Soluciones atornilladas anguladas

Finalidad

La solución BHS30, basada en una conexión llave-tornillo con capacidad de angulación de 0º a 30º, garantiza siempre la solución óptima a cada rehabilitación.
Esta tecnología aporta unas prestaciones mecánicas excepcionales, absoluta versatilidad y facilidad de uso, por lo que simplifica la labor protética al usuario y se adapta a sus necesidades, mejorando los costes del proceso y reduciendo la posibilidad de errores.

Contenido

Cada aditamento se comercializa por separado.

Indicaciones para rehabilitaciones

Antirrotatorio:

indicado para coronas fijas atornilladas unitarias, en implantes con divergencia.

Rotatorio:

indicado para restauraciones fijas atornilladas múltiples, en implantes con divergencia.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes con una importante reducción del tiempo y de los costes en materiales para su confección.

BHS30 es compatible con las técnicas de colado, Sobrecolado y mecanizado, gracias a sus bases mecanizadas de Cromo Cobalto y de Titanio.

Chimeneas disponibles en 10°, 20° y 30° de angulación.

Materia

Llave Inox. 17 4PH Stainless Steel Tornillo de Titanio grado V. Chimeneas de WIC (Resina Calcinable) Bases de Cromo Cobalto y Titanio grado V.

Plataformas

3.5 mm.

Tipo de rehabilitación

Atornillada

Destornillador

Conexión Cóncava Cuatrilobular

Torque de apriete tornillo

25 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

El sistema está diseñado para mejorar la estética y funcionalidad de las prótesis atornilladas.

Unitaria Atornillada Angulada L35

TORNILLOS		
CLÍNICA	LABORATORIO	
IP02021	IP02022	

Soluciones atornilladas anguladas

Unitaria Atornillada Angulada L35

PLATAFORMA Ø 3.5 mm				
BASE DE CROMO COBALTO		BASE DE TITANIO		
IP03050	IP03051	IP03048	IP03049	
8	•			
\bigcirc		\bigcirc		

BASE DE CROMO COBALTO PARA SOBRECOLADO + SOLDADURA)		BASE DE TITANIO PARA (COLADO + CEMENTADO)			
10°	20º	30º	10º	20º	30º
IP04058	IP04057	IP04056	IP04061	IP04060	IP04059
					/

Múltiple Atornillada para Transepitelial L35

TORNILLOS		
CLÍNICA	LABORATORIO	
IP02003	IP02004	
	•	

CILÍNDRO CALCINABLE, DIRECTO A TRANSEPITELIAL			
10º	20º	30º	
IP07009	IP07006	IP07003	
1	1	1	

CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)		CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
10º	20º	30 º	10º	20º	30º
IP04010	IP04006	IP04002	IP04012	IP04008	IP04004

Pilares tallables rectos

Finalidad

Actúa como elemento directo al implante. Una vez tallada su parte superior se encera para realizar el colado. Posteriormente se atornilla y se cementa la corona definitiva al pilar como estructura final del diente.

Contenido

Pilar tallable recto más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias o múltiples cementadas, directas a implantes.

Óptimo para nivelar la altura de emergencia de la corona en relación a los dientes adyacentes y espesores de los tejidos blandos.

Ventajas en la utilización

Facilita el control de la estética de la prótesis.

Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Material

Pilar tallable recto y tornillo: Titanio grado V.

Plataformas

3.5 mm.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

30 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Nota

Se mecaniza con una cara plana en la parte superior cónica del pilar para poder posicionar la corona al cementar y guardar una línea oclusal óptima con los dientes adyacente. Disponibilidad de alturas: 2.0 mm y 4.0 mm.

Pilar tallable

PLATAFORMA Ø 3.5 mm		
H2	H4	
6IH2	6IH4	

Pilares tallables angulados

Finalidad

Actúa como elemento directo al implante. Una vez tallada su parte superior se encera para realizar el colado corrigiendo la divergencia de la colocación de los implantes. A continuación, se atornilla y se cementa la corona definitiva al pilar como estructura final del diente.

Contenido

Pilar tallable angulado más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias, múltiples cementadas.

Permite la corrección en implantes divergentes, nivela las alturas de emergencia de las coronas en relación a los dientes adyacentes y permite una perfecta adaptación en distintos espesores de tejido blando.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes.

Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Materia

Pilar tallable angulado y tornillo: Titanio grado V.

Plataformas

3.5 mm.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

30 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Disponibilidad de angulaciones 15° y 25°.

Pilar tallable angulado

PLATAFORMA Ø 3.5 mm		
15°	25 °	
7115	7125	
\bigcirc	\bigcirc	

Pilares de bola

Finalidad

Pilar base para la reconstrucción protésica sobredentaduras implanto-muco-soportadas sobre bolas, para maxilares inferiores.

Indicaciones

Indicados en sector anterior mandibular para prótesis completas, sobre un mínimo aconsejado de cuatro pilares de bola. El casquillo metálico se ubica en la prótesis y contiene en su interior la retención de teflón / O-ring.

Aditamentos complementarios no incluidos

Conjunto 1. Anillo titanio + O-ring. Conjunto 2. Cazoleta titanio + Retención teflón.

Ventajas en la utilización

Permiten una angulación máxima de 25° a 30°.

Recomendaciones

No utilizar en maxilar superior. Se recomienda la colocación mínima de 4 implantes en maxilares inferiores. Con el sistema O-ring dejar expuesto supragingival el pilar de bola 1.5 mm.

Materia

Pilar y anillo de Titanio grado V, O-ring de elastómero natural y retención de teflón.

Plataformas

3.5 mm.

Torque de apriete

35 Ncm.

Pilar de bola

RETENCIÓN SISTEMA O-RING		RETENCIÓN SISTEMA TEFLÓN	
Anillo metálico	O-ring	Cápsula metálica	Retención de teflón
8RAM	8ROR	8RCM	8RTF

Notas

- Diámetro de la bola 2.50 mm.
 Disponibilidad de alturas: 2.0 mm y 4.0 mm.
- Realizar revisiones periódicamente para la sustitución de los teflones/O-ring.

Pilares LOCX®

Finalidad

Sistema de anclaje supragingival de eje resiliente para sobredentaduras sobre implantes. Consta de dos elementos: uno metálico que se atornilla directo a implante y una cazoleta metálica que va colocada en la prótesis, y contiene la retención de nylon según selección.

Contenido

Pilar LOCX®, posicionador/tránsfer de impresión, cazoleta de titanio, espaciador, retenciones: negra, azul, rosa, transparente y roja.

Aditamentos complementarios no incluidos en los sets

Retención de color naranja y verde.

Indicaciones

El sistema de anclaje "LOCX", está diseñado para la retención en dentaduras completas / parciales en implantes situados en la mandíbula o maxilar. Se recomienda un mínimo de 2 implantes en mandíbula. Se recomienda un mínimo de 4 implates en el maxilar superior.

Las retenciones con centrador color (transparente, azul y rosa) corrigen una divergencia de 10° por pilar, a diferencia, las retenciones sin centrador (roja, naranja y verde) corrigen una divergencia de 20° por pilar.

La retención de color negro se utiliza exclusivamente para el proceso del rebase en clínica/laboratorio.

Ventajas en la utilización

Mayor versatilidad en la corrección de angulaciones y durezas en las retenciones.

Material

Pilar y cazoleta de Titanio grado V, retenciones de nylón.

Plataformas

3.5 mm.

Torque de apriete

35 Ncm.

Contraindicaciones relativas de uso

En aquellos tratamientos donde se requiera una conexión rígida total.
En implantes con divergencias superiores a 20° respecto a la vertical.
Espacio protésico reducido.
Pacientes bruxistas.
Se contraindica el uso de los aditamentos LOCX° en pacientes que presenten alergia o sean hipersensibles a los materiales en que se fabrican los mismos.

Recomendaciones

En la medida de lo posible es aconsejable dejar expuesto supragingival el pilar aprox. 1.5 mm, para evitar las presiones de las retenciones.

Se recomienda realizar la prótesis en el laboratorio para obtener un óptimo acabado de la misma. Se debe polimerizar la resina para endurecerla y eliminar los monómeros para evitar irritaciones en la mucosa.

Notas

- Se recomienda realizar controles periódicos al paciente hasta conseguir un óptimo ajuste entre el tejido blando y la prótesis.
- Realizar revisiones periódicamente para la sustitución de las retenciones.

Oxtein L35 Soluciones Protésicas

Pilares LOCX®

PLATAFORMA Ø 3.5 mm							
Н1	H2	Н3	H4	Н5	Н6		
9IH1	9IH2	9IH3	9IH4	9IH5	9IH6		
	Se de la constante de la const				The state of the s		

Retenciones LOCX®

RETENCIONES									
			Divergen hasta 10°			Divergen ha	Divergen hasta 20°		
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra 0 Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9R00L	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A

Instrumental LOCX®

Aditamentos LOCX®

Oxtein L35Soluciones Protésicas

Pilares transepiteliales

Finalidad

Aditamento mecanizado que, fijado directamente al implante, realiza la función principal de actuar como elemento intermedio entre el implante y la prótesis. La existencia en varias alturas, 1 mm, 2 mm, 3 mm y 4 mm en pilares rectos permiten elevar el plano de asentamiento de la prótesis cuando existe un grosor de tejido blando que no es adecuado para realizar una conexión directa a implante.

Sus angulaciones de 17° y 30°, permiten la corrección de disparalelismos entre implantes o bien, entre implante y dientes adyacentes.

Aditamentos complementarios incluidos

Los pilares transepiteliales angulados se suministran con posicionador y tornillo de retención.

Indicaciones

- Indicados para rehabilitaciones unitarias y múltiples.
- Para técnicas de carga o estética inmediata.
- En los casos comprometidos donde la colocación de otros tipos de aditamentos protésicos son un alto riesgo para la estética del paciente.
- En los casos con déficit importante de la masa osea elástica mandibular, donde la colocación de implantes para otros tipos de rehabilitación supone un alto riesgo de fractura osea.
- Importante: En casos unitarios solo se pueden utilizarlos pilares transepiteliales rectos.

Material

Titanio grado V.

Materiales torretas

Provisional: Peek, Titanio: Titanio grado V Calcinable: Plexi Glass.

Plataformas

3.5 mm.

Llaves de torque

Pilares rectos: Llave transepitelial. Pilares angulados: 1.25 mm Hexagonal.

Torques de apriete

Pilares rectos: 35 Ncm.

Pilares angulados

Troque de apriete tornillo: 30 Ncm como máximo.

Tapones pilares de cicatrización

10 Ncm.

Tornillo retención definitivo

15 Ncm

Ventajas en la utilización

Sus angulaciones permiten la corrección de disparalelismos entre implantes y/o dientes adyacentes.

Solución mínimamente invasiva con restauración fija de arcada completa para la técnica del All-on-four* colocando dos transepiteliales angulados en zona posterior y dos de rectos en zona anterior por arcada. Esta técnica permite rehabilitar una arcada completa con tan solo 4 implantes sin necesidad de realizar injertos óseos gracias a la inclinación de los transepiteliales posteriores.

Contraindicaciones relativas de uso

Estaría contraindicado en todos los casos en los que se considere mejor el uso de otro tipo de rehabilitación.

Recomendaciones

Para la planificación es necesario utilizar el tránsfer de impresión y análogo específicos para el pilar transepitelial.

Para la rehabilitación de transepiteliales unitarios, utilizar análogo, tránsfer de impresión y torretas antirrotatorias.

En caso de realizar una estética inmediata, se recomienda utilizar el pilar provisional de Peek.

Oxtein L35 Soluciones Protésicas

Transepitelial recto

PLATAFORMA Ø 3.5 mm						
Н1	H2	Н3	H4			
MUIH1	MUIH2	MUIH3	MUIH4			

Transepitelial angulado estándar

PLATAFORMA Ø 3.5 mm	
17°	30°
MUI17	MUI30

Tapón de cicatrización transepitelial

Tránsfer transepitelial

Análogo transepitelial

Oxtein L35 Soluciones Protésicas

Torreta transepitelial

PROVISIONAL DE PEEK		DE TITANIO		CALCINABLE	
Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)	Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)	Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)
MUIEPKR	MUIEPKAR	MUIETR	MUIETAR	MUIECR	MUIECAR

Llave para transepitelial

MANUAL DE CONEXIÓN A CARRACA	C/A MECÁNICO
YMULLTCR	YMULLTCA

The Perfect Match

Conexiones precisas

Dado que una de nuestras principales misiones es la de de pensar y ofrecer nuevas soluciones protésicas, hemos incorporado en nuestra familia de pilares transipiteliales rectos, torretas antirrotatorias para casos unitarios.

Las tenemos disponibles en los siguientes materiales: En Peek para restauraciones provisionales. En Plexi Glass, para la realización de un mejor colado. En Titanio para quienes deseen un inmejorable ajuste.

Importante

Éstas solo están disponibles para pilares transipiteliales rectos.

Oxtein L35 Soluciones CAD CAM

Scan Body

Finalidad

Aditamento utilizado como elemento de medición para transferir virtualmente la posición del implante en el modelo de trabajo o directo desde boca, y así posteriormente proceder a la elaboración de la prótesis personalizada implantosoportada vía CAD CAM. También denominado localizador o marker.

Contenido

Scan body más tornillo retentivo.

Elementos complementarios no incluidos

Biblioteca digital correspondiente a la conexión.

Indicaciones

Realización de estructuras implantosoportadas directas a implante o transepiteliales. Colocación en boca para la toma de impresión intraoral en clínica, o colocación en el modelo de trabajo para escaneado de éste en laboratorio. Recomendable utilizar tantos scan bodies como implantes haya en la restauración para obtener mayor precisión y rapidez.

Ventajas en la utilización

Fácil lectura, sin necesidad de sprays. Sistema compatible con los principales softwares cad:

- 3shape.
- Exocad.
- Dental Wings.

Sugerencia de uso

En su uso en clínica o en boca, tener en cuenta la altura de la encía, ya que podría dificultar la lectura óptima del localizador.

Material

Scan Body Peek. Tornillo Titanio Grado V.

Tipo de destornillador Hexagonal 1.25 mm.

Torque de apriete tornillo

Scan Bodies

TRANSEPITELIAL						
Longitud 8.5 mm		Longitud 10 mm				
CLMURI	CLMUARI	CLMUR	CLMUAR			
	\bigcirc		\bigcirc			

Análogo para impresora 30

TRANSEPITELIALES				
Rotatorio	Antirrotatorio			
MUU4R3D	MUU4AR3D			
	\bigcirc			

Oxtein L35 Soluciones CAD CAM

Interfases

Finalidad

Elemento directo al implante que una vez cementado a la corona o puente sirve como estructura final de la restauración.

Contenido

Interfase más tornillo retentivo.

Indicaciones

Interfase Antirrotatoria: Indicada para coronas fijas atornilladas unitarias. Interfase Rotatoria: Indicada para restauraciones fijas múltiples, o sobredentaduras.

Utilizar junto al scan body y biblioteca digital correspondiente para la fabricación de la prótesis definitiva.

Ventajas en la utilización

Garantiza un ajuste óptimo a la conexión del implante. Mejor distribución de las cargas.

Contraindicaciones de uso

En casos de espacio oclusal muy limitado.

Material

Interfases y tornillo: Titanio Grado V.

Tipo de destornillador

Hexagonal 1.25 mm.

Torque de apriete tornillo

30 Ncm máximo.

Transepiteliales

15 Ncm.

Interfases

TRANSEPITELIAL				
Rotatorio / múltiples	Antirrotatorio / unitario			
CIMUR	CIMUAR			

Oxtein L35 Tornillos

Tornillo de cierre

Características generales

Tras la inserción de los implantes, cubiertos o parcialmente cubiertos por tejido blando, y durante la fase de reparación de los tejidos de sostén, debe existir una protección de la conexión del implante para evitar su obstrucción antes de la carga de la supraestructura o prótesis. Para ello se coloca roscado el tornillo de cierre.

Tornillos L35

PLATAFORMA Ø 3.5 mm			TRANSEPITELIALES		
Tornillo retentivo clínica	Tornillo retentivo angulados	Tornillo laboratorio	Tornillo retentivo torretas	Tornillo laboratorio	Tornillo pilares angulados
1IETR	1IETR	1IETL	MUIETR14	MUU1TL	MUITRA

Oxtein L6

Contenido

Implante Oxtein L6	194
Secuencia de fresado	196
Sets quirúrgicos	198
Instrumental	200
Protocolo quirúrgico	206
Soluciones Protésicas	210
Pilar de cicatrización	218
Tránsfer de impresión	219
Análogos	220
Bases mecanizadas y UCLAS	220
UCLAS de titanio	222
Pilares provisionales de peek	224
Soluciones atornilladas anguladas	226
Pilares tallables rectos	232
Pilares tallables angulados	
Pilares de bola	236
Pilar LOCX	238
Pilares transepiteliales	242
Soluciones CAD CAM	248
Scan body	248
Interfases	250
Tornillos	252

Oxtein L6

Especialmente diseñado para obtener una óptima estabilidad primaria en huesos de baja densidad. Su perfil de rosca ha sido diseñado para simular un expansor óseo, con la finalidad de compactar el hueso en todo su perímetro. Su doble espira reduce las vueltas de inserción y minimiza el riesgo de sobrecalentamiento en el hueso.

Titanio

Grado IV cold worked.

Tratamiento superficial Oxigenna[®]

"Surface argón system".

Conexión

Hexágono externo.

Plataformas

Ø 3.3 mm Ø 4.1 mm Ø 5.0 mm.

Tornillo de cierre

Incluido y codificado por color.

Conexión hexagonal externa

2.7 x 0.7 en plataformas 4.1 y 5.0

Doble espira activa

Facilidad de inserción.

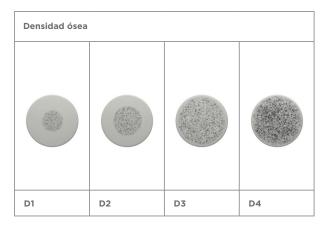
Apice radial y autorroscante con forma helicoidal

Tratamiento superficial hasta la plataforma

Morfología cilíndrica

Transportador 3 en 1

- 1. Transportador.
- 2. Transfer de impresión para cubeta cerrada.
- 3. Pilar tallable o fresable para cementar o cemento-atornillar con codificación de color identificativo del diámetro del implante.


REFERENCIAS SISTEMA TRANSPORTADOR							
Ø vs H	Ø 3.3 mm	■Ø 3.75 mm	■ Ø 4.25 mm	■ Ø 5.0 mm			
H 6.0 mm	_	L63706T	L64206T	L65006T			
H 8.5 mm	L63308T	L63708T	L64208T	L65008T			
H 10.0 mm	L63310T	L63710T	L64210T	L65010T			
H 11.5 mm	L63311T	L63711T	L64211T	L65011T			
H 13.0 mm	L63313T	L63713T	L64213T	L65013T			
H 14.5 mm	L63314T	L63714T	L64214T	_			
Plataforma Conexión	Ø 3.3 mm	Ø 4.1 mm		Ø 5.0 mm			

Oxtein L6 Secuencia de fresado

Secuencia detallada paso a paso

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa final Ø 2.75 mm para implante de Ø 3.3 mm a 750 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 3.1 mm a 750 r.p.m.
- 4 Fresa final Ø 3.1 mm para implante de Ø 3.75 mm a a 750 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 3.6 mm a 650 r.p.m.
- Fresa final Ø 3.6 mm para implante de Ø 4.25 mm a a 650 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 4.1 mm a 550 r.p.m.
- 6 Fresa intermedia Ø 4.1 mm a 550 r.p.m.
- 7 Fresa final Ø 4.4 mm para implante de Ø 5.0 mm a a 450 r.p.m. En caso de huesos con densidades D1 y D2 seguir con la fresa Ø 4.8 mm a 450 r.p.m.

Recomendaciones importantes

Utilizar irrigación abundante.

No sobrepasar los 35-45 Ncm, en la inserción del implante. Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso.

Fresas para huesos duros

Se recomienda pasar el Ø de la siguiente fresa de la secuencia, para la colocación de implantes cilíndricos en huesos de densidades D1 y D2.

Disponibles en conexión a llave carraca dinamométrica.

Secuencia para implante de Ø 3.3 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.75 mm a 750 r.p.m.
- 4 En caso de huesos con densidades D1 y D2 pasar la fresa Ø 3.1 mm a 750 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4
3.3 mm	D1 - D2	•	•	•	•
	D3 - D4	•	•	•	

Secuencia para implante de Ø 3.75 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.75 mm a 750 r.p.m.
- **4** Fresa final Ø 3.1 mm a 750 r.p.m.
- **5** En caso de huesos con densidades D1 y D2 pasar la fresa Ø 3.6 mm a 650 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5
3.75 mm	D1 - D2	•	•	•	•	•
	D3 - D4	•	•	•	•	

Secuencia para implante de Ø 4.25 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.75 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- 5 Fresa final Ø 3.6 mm a 650 r.p.m.
- 6 En caso de huesos con densidades D1 y D2 pasar la fresa Ø 4.1 mm a 550 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5	6
4.25 mm	D1 - D2	•	•	•	•	•	•
	D3 - D4	•	•	•	•	•	

Secuencia para implante de Ø 5.0 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.3 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- **5** Fresa Ø 3.6 mm a 650 r.p.m.
- 6 Fresa Ø 4.1 mm a 550 r.p.m.
- 7 Fresa intermedia Ø 4.4 mm a 450 r.p.m.
- **8** En caso de huesos con densidades D1 y D2 pasar la fresa Ø 4.8 mm a 450 r.p.m.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7	8
5.0 mm	D1 - D2	•	•	•	•	•	•	•	•
	D3 - D4	•	•	•	•	•	•	•	

Oxtein L6 Sets quirúrgicos

Set plus

YUSQP - Set quirúrgico plus incluye:						
YUCRD	Llave carraca fija y dinamométrica de titanio					
YULLA	Llave acodada de extremo abierto					
YUMED	Medidor universal					
IP2253 + YUDCRC	Mango atornillador + Atornillador 1.25 corto conexión carraca					
YUDCRL	Atornillador 1.25 largo conexión carraca					
YUDCA	Atornillador 1.25 conexión C/A					
YUAM	Adaptador manual					
YUACRL	Adaptador carraca largo					
YUACAC	Adaptador C/A corto					
YUACAL	Adaptador C/A largo					
IP2255	Prolongador / Extensor					
YUFRL	Fresa lanceolada					
YNFR23L	Fresa cónica piloto larga con tope Ø 2.35 mm					
YNFR27L	Fresa cónica larga con tope Ø 2.7 mm					
YNFR31L	Fresa cónica larga con tope Ø 3.1 mm					
YNFR35L	Fresa cónica larga con tope Ø 3.5 mm					
YNFR40L	Fresa cónica larga con tope Ø 4.0 mm					
YNFR45L	Fresa cónica larga con tope Ø 4.5 mm					
YLFR23L	Fresa cilíndrica piloto larga con tope Ø 2.3 mm					
YLFR27L	Fresa cilíndrica larga con tope Ø 2.75 mm					
YLFR31L	Fresa cilíndrica larga con tope Ø 3.1 mm					

YLFR36L	Fresa cilíndrica larga con tope Ø 3.6 mm
YLFR41L	Fresa cilíndrica larga con tope Ø 4.1 mm
YLFR44L	Fresa cilíndrica larga con tope Ø 4.4 mm
YLFR48L	Fresa cilíndrica larga HD Ø 4.8 mm
Y1MR35C	Macho de roscar carraca Ø 3.5 mm para M12
Y1MR40C	Macho de roscar carraca Ø 4.0 mm para M12
Y1MR45C	Macho de roscar carraca Ø 4.5 mm para M12
Y1MR50C	Macho de roscar carraca Ø 5.0 mm para M12
YNMR35	Macho de roscar carraca Ø 3.5 mm para N6
YNMR40	Macho de roscar carraca Ø 4.0 mm para N6
YNMR50	Macho de roscar carraca Ø 5.0 mm para N6
Y1DRMQC	Driver mecánico directo a implante M12 corto Ø 2.82 mm
Y1DRMLC	Driver mecánico directo a implante M12 corto Ø 3.80 mm
Y3DR33	Driver mecánico directo a implante L6 2.3 x 1.0
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7x0.7
Y56DR	Driver mecánico directo a implante L35
YUTFRH60	Tope H 6 para fresas
YUTFRH85	Tope H 8.5 para fresas
YUTFRH10	Tope H 10 para fresas
YUTFRH11	Tope H 11.5 para fresas
YUTFRH13	Tope H 13 para fresas
YUTFRH14	Tope H 14.5 para fresas

Set basic

YLSQB - Set basic L incluye:					
YUAM	Adaptador manual				
YUACRL	Adaptador carraca largo				
YUACAC	Adaptador C/A corto				
YUDML	Atornillador fijo 1.25 largo manual				
IP2255	Prolongador / Extensor				
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7x0.7				
Y56DR	Driver mecánico directo a implante L35				
YLMP2327	Medidor prof. / paralelizador Ø 2.3 mm / 2.7 mm				

YLMP3136	Medidor prof. / paralelizador Ø 3.1 mm / 3.6 mm
YUFRL	Fresa lanceolada
YLFR23C	Fresa cilíndrica corta Ø 2.3 mm
YLFR27C	Fresa cilíndrica corta Ø 2.75 mm
YLFR31C	Fresa cilíndrica corta Ø 3.1 mm
YLFR36C	Fresa cilíndrica corta Ø 3.6 mm
YLFR41C	Fresa cilíndrica corta Ø 4.1 mm
YLFR44C	Fresa cilíndrica corta Ø 4.4 mm
YLFR48C	Fresa cilíndrica corta Ø 4.8 mm

Importante

Longitud máxima de colocación de implante con las fresas incluidas en el set basic: 13.0 mm.

Oxtein L6 Instrumental

Fresa lanceolada

Fresa corta

FRESA PILOTO CORTA CILÍNDRICA	FRESA QUIRÚRGICA CORTA CILÍNDRICA						
Ø 2.3 mm	Ø 2.75 mm	Ø 3.1 mm	Ø 3.6 mm	Ø 4.1 mm	Ø 4.4 mm	Ø 4.8 mm	
YLFR23C	YLFR27C	YLFR31C	YLFR36C	YLFR41C	YLFR44C	YLFR48C	
	Name of the last o		F. 1000			800	

Fresa larga

FRESA PILOTO LARGA CILÍNDRICA	FRESA QUIRÚRGICA LARGA CILÍNDRICA						
Ø 2.3 mm	Ø 2.75 mm	Ø 3.1 mm	Ø 3.6 mm	Ø 4.1 mm	Ø 4.4 mm	Ø 4.8 mm	
YLFR23L	YLFR27L	YLFR31L	YLFR36L	YLFR41L	YLFR44L	YLFR48L	

Tope fresas largas

H 6.0 mm	H 8.5 mm	H 10.0 mm	H 11.5 mm	H 13.0 mm	H 14.5 mm
YUTFRH60	YUTFRH85	YUTFRH10	YUTFRH11	YUTFRH13	YUTFRH14

Oxtein L6 Instrumental

Bisturí circular de conexión contra ángulo

Ø 3.3 mm	Ø 3.5 mm	Ø 3.75 mm	Ø 4.0 mm	Ø 4.25 mm	Ø 4.5 mm	Ø 4.8 mm	Ø 5.0 mm
IP5277A	IP5286A	IP5279A	IP5280A	IP5282A	IP5285A	IP5287A	IP5283A
500 0	0.35	0.000	0.00	907/0	0.40	0.48	0.00

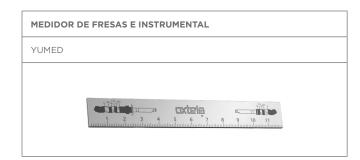
Medidor de profundidad y pin de paralelismo

Ø 2.3 / Ø 2.75 mm	Ø 3.1 / Ø 3.6 mm
YLMP2327	YLMP3136

Driver

Prolongador de fresas

Adaptador


MANUAL	CARRACA CORTO	CARRACA LARGO	CONTRA-ÁNGULO CORTO	CONTRA-ÁNGULO LARGO
YUAM	YUACRC	YUACRL	YUACAC	YUACAL

Oxtein L6 Instrumental

Llaves

LLAVE DE EXTREMO ABIERTO	LLAVE CARRACA DE TITANIO FIJA Y DINAMOMÉTRICA (20 A 55 Ncm.)		
YULLA	YUCRD		
axteiā			

Medidor

Punta atornillador

MANUAL INTERCAMBIABLE CONEXIÓN CARRACA			MANUAL FIJO		MECÁNICO
Larga	Media	Corta	Larga	Corta	Media
YUDCRL	YUDCRM	YUDCRC	YUDML	YUDMC	YUDCA

Juntas para instrumental 10 unidades

Oxtein L6 Protocolo quirúrgico

Preparación de los tejidos blandos y de la zona cortical

¹ Con bisturí circular

Se inicia la secuencia quirúrgica con el bisturí circular correspondiente al Ø de implante planificado a una velocidad de giro de 350 r.p.m.

Una vez realizado el corte, se extrae el tejido blando sobrante mediante periostotomo y/o pinza.

Se recomienda el uso de una férula quirúrgica para continuar con la osteotomía.

² Con incisión de colgajo

Se inicia la incisión levantado el colgajo con la ayuda de separadores gingivales.

Se recomienda el uso de una férula quirúrgica una vez haya acceso a la cresta ósea.

En casos de encontrar crestas óseas estrechas, se aconseja regularizarla para aumentar la anchura vestíbulo-lingual o palatina.

³ Secuencia quirúrgica inicial con fresa lanceolada

Se inicia la secuencia con la fresa lanceolada, con una velocidad de giro de 850 r.p.m, hasta traspasar la cortical ósea centralizando el eje para las siguientes osteotomías.

Se insertará por la guía de la férula quirúrgica en caso de usarse ésta.

Importante

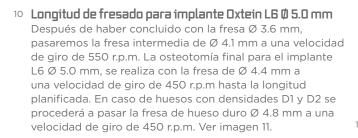
Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso.

Es necesario abundante irrigación en todas las osteotomías y procesos hasta la inserción del implante.

Para una mayor seguridad se recomienda el uso de los topes de fresas.

Preparación del lecho óseo

Después de haber finalizado la preparación de la zona gingival y cortical, se procede a realizar la osteotomía con la fresa piloto de Ø 2.30 mm a una velocidad de giro de 850 r.p.m hasta la longitud planificada.



Secuencia final

³ Longitud de fresado para implante Oxtein L6 Ø 3.3 mm
Después de haber concluido la fase anterior, se procede a
realizar la osteotomía final para el implante L6 Ø 3.3 mm, se
realiza con la fresa de Ø 2.75 mm con una velocidad de giro
de 750 r.p.m profundizando hasta la longitud planificada.
En caso de huesos con densidades D1 y D2 se procederá a
pasar la siguiente fresa Ø 3.1 mm a una velocidad de giro
de 750 r.p.m.

Después de haber realizado las primeras osteotomías con las fresas correspondientes, se debe insertar el medidor de profundidad/paralelizador para comprobar la longitud de fresado y paralelismo obtenido. Ver imágenes 2, 4, 6 y 8.

Oxtein L6 Protocolo quirúrgico

Proceso de inserción del implante Oxtein L6 con transportador

- 1 Abrir la caja del implante con guantes de nitrilo por la zona troquelada.
- 2 Extraiga la bandeja en la que está depositado el blíster del implante.
- 3 Posteriormente, en condiciones estériles, desprecintar el blíster por la esquina no redondeada hasta liberar el vial de plástico con el tapón de titanio que hay en su interior.
- 4 Depositar el vial en campo estéril sin tocarlo con los guantes.
- 5 Seguidamente retirar el tapón de titanio que va a presión. (No desecharlo ya que incluye el tornillo de cierre).
- **6** Extraer axialmente del interior del vial el soporte plástico dónde se encuentra el implante con su transportador.
- 7 No tocar el implante con los guantes para evitar su contaminación y sujetando firmemente el soporte plástico, acoplar los hexágonos del transportador y del adaptador con movimiento rotacional y axial hasta oír un clic.
- 8 Una vez conexionado, extraer el implante de su soporte con un ligero movimiento ascendente.
- **9** Finalmente llevar el implante a boca para iniciar su inserción.

Importante

Antes de proceder a realizar la inserción del implante, leer detenidamente las instrucciones de uso.

No sobrepasar los 45 Ncm en la inserción del implante.

The Perfect Match

Tu éxito también es el nuestro

Cada uno de los envases de nuestros implantes Oxtein incluye no solo las indicaciones de uso que detallan la forma correcta de utilización de cada uno de ellos, sino que adicionalmente también contiene indicaciones prácticas para los pacientes que facilitarán el trabajo del clínico en el proceso de recuperación post-operatorio de sus pacientes.

Así mismo encontrará también en cada uno de ellos la carta de garantía de por vida de nuestros implantes, y por supuesto el pasaporte implantológico que podrá ofrecer a sus pacientes como certificado de trazabilidad.

Oxtein L6Soluciones Protésicas

Plataforma 3.3 mm Plataforma 4.1 mm Plataforma 5.0 mm

Análogos

		TRANSEPITELIAL		PILAR LOCX®	3D		
3.3	4EP33	MUU4R	MUU4AR	9U4	4EP333D	MUU4R3D (Transep)	MUU4AR3D (Transep)
4.1	4EP41				4EP413D	(Hariesp)	(Hansop)
5.0	4EP50	_	_	_	4EP503D	_	_

Tránsfer de impresión

Pilares de cicatrización

		TRANSEPITELIAL
3.3	2E33H3	MUIEPLN
3.3	2E33H5	
3.3	2E33H7	
4.1	2E41H3	
4.1	2E41H5	
4.1	2E41H7	
5.0	2E50H3	
5.0	2E50H5	

Unitaria

	ATORNILLADA							
	UCLA			Provisional	Transepitelial			
	Calcinable	Base mecanizada		Recto				
	5E33CAR	5E33BAR	5E33TAR	PKE33AR	MUE33H2			
3.3					MUE33H3			
					MUE33H4			
4.1	5E41CAR	5E41BAR	5E41TAR	PKE41AR	MUE41H2	4.8		
7					MUE41H3			
5.0	5E50CAR				MUE41H4			

ATORNILLADA		
ADIMENTOS TR	ANSEPITELIALES	
Calcinable	Titanio	Provisional Peek
MUIECAR	MUIETAR	MUIEPKAR

Unitaria Atornillada Angulada L6

LLAVE	
IP01001	

	TORNILLOS						
3.3	IP02035 (Tor. Clínica)		IP02036 (Tor. Lab.)				
4.1 5.0	IP02001 (Tor. Clínica)		IP02002 (Tor. Lab.)				

Oxtein L6Soluciones Protésicas

Plataforma 3.3 mm Plataforma 4.1 mm Plataforma 5.0 mm

Unitaria Atornillada Angulada L6

	CILÍNDRO CALCINABLE						
	10º	20º	30º				
3.3	IP07140	IP07138	IP07136				
4.1	IP07007	IP07004	IP07001				
5.0	IP07065	IP07063	IP07061				
	\bigcirc	\bigcirc	\bigcirc				

	CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)				CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
	10° 20° 30°			10º	20º	30º		
	IP04009	IP04005	IP04001	IP04020	IP04019	IP04018		
			/			/		
	E	Base Cromo Co	balto		Base TI			
4.1		IP03003			IP03005			

Unitaria / Múltiple

	CEMENTADA				
	Pilar recto		Pilar angulado		
	H2 mm	H4 mm	15°	25°	
3.3	6E33H2	6E33H4	7E3315	7E3325	
4.1 5.0	6E41H2	6E41H4	7E4115	7E4125	

Múltiple

	ATORNILLADA				
	UCLA	Provisional			
	Calcinable	Base mecanizada	Titanio		
3.3	5E33CR	5E33BR	5E33TR	PKE33R	
4.1	5E41CR	5E41BR	5E41TR	PKE41R	
5.0	5E50CR				

Múltiple Atornillada Angulada L6

	CILÍNDRO CALCINABLE				
	10º	20º	30 º		
3.3	IP07141	IP07139	IP07137		
4.1	IP07008	IP07005	IP07002		
5.0	IP07008	IP07064	IP07062		

	CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)			CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
	10º	20º	30º	10º	20º	30º	
	IP04009	IP04005	IP04001	IP04020	IP04019	IP04018	
	1	1	/		1		
	Base Cromo Cobalto IP03004				Base TI		
4.1					IP03006		

Oxtein L6Soluciones Protésicas

Plataforma 3.3 mm Plataforma 4.1 mm Plataforma 5.0 mm

Múltiple

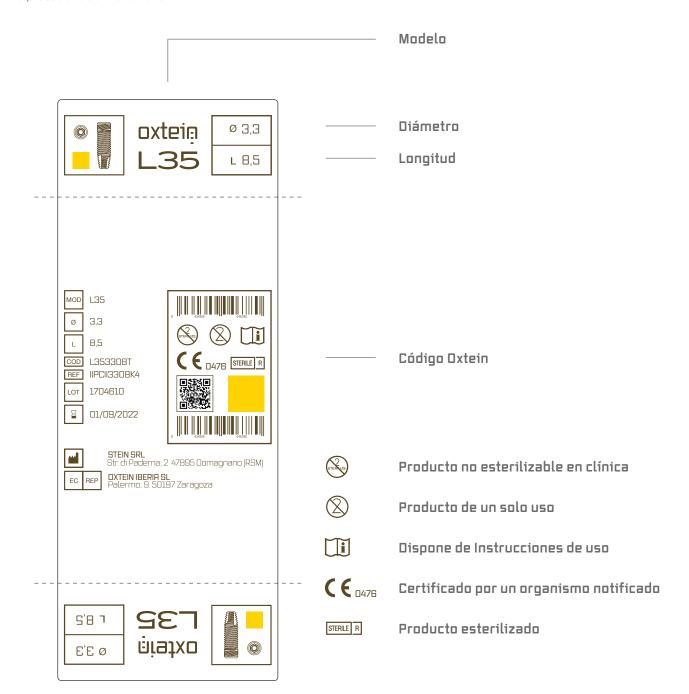
Múltiple Atornillada para Transepitelial L6

Sobredentadura

PILAR DE BOLA			RETENCIONES			
	H2 mm	H4 mm	8RAM	8ROR	8RCM	8RTF
l.1 i.0	8E41H2	8E41H4				

	PILAR LOCX®							
	H1	H2	Н3	Н4	H5	Н6		
3.3	9E33H1	9E33H2	9E33H3	9E33H4	9E33H5			
4.1	9E41H1	9E41H2	9E41H3	9E41H4	9E41H5	9E41H6		

RETENCIONES									
			Divergen hasta 10°				Divergen hasta 20°		
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra O Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9R00L	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
	0								


CAD CAM

	SCAN BODY						INTERFASE			
	Longitud Longitud Transepitelial 8.5 mm 10 mm			Directo a implante		Transepitelial				
	0.5 11111	10 11111	Longitud 8.5 mm		Longitud 10 mm					
3.3	CL33I	CL33	CLMURI	CLMUARI	CLMUR	CLMUAR	CIE33R	CIE33AR	CIMUR	CIMUAR
4.1	CL4150I	CL4150					CIE41R	CIE41AR		
5.0							CIE50R	CIE50AR		
	ı									
	\bigcirc	\bigcirc		\bigcirc				\bigcirc		\bigcirc

The Perfect Match

Ponemos la información a tu alcance

La etiqueta exterior de los implantes Oxtein fue diseñada para facilitar la rápida identificación de todas las características relevantes de cada una de ellos lo que le garantiza tener el correcto conocimiento del contenido antes de proceder a abrir el envase.

Pilar de cicatrización

Características generales

Una vez finalizada la fase de reparación de los tejidos de sostén, debe existir una vía mucosa o túnel mucoso de conexión del implante a la estructura secundaria o prótesis. El pilar de cicatrización se encarga de generar ese túnel mucoso, y para ello es colocado roscado sobre el implante.

Materia

Titanio grado V.

Destornillador

Hexagonal de 1.25 mm.

Sugerencia de utilización

Torque máximo de apriete 10 Ncm Un solo uso.

Pilar cicatrización

PLATAFORMA Ø	3.3 mm		PLATAFORMA Ø 4.1 mm			PLATAFORMA Ø 5.0 mm	
Н3	Н5	Н7	Н3	Н5	Н7	Н3	Н5
2E33H3	2E33H5	2E33H7	2E41H3	2E41H5	2E41H7	2E50H3	2E50H5

Tránsfer de impresión

Características generales

Disponibilidad para la técnica de cubeta abierta y cerrada.

Los tránsfers de de impresión se suministran con su respectivo tornillo de retención: Para cubeta abierta tornillo largo. Para la cubeta cerrada tornillo corto.

Finalidad

Aditamento que, conexionado a la porción superior o coronal del implante en el interior de la cavidad bucal y fijado mediante un tornillo pasante de rosca, sirve para realizar la transferencia de la posición del implante en el medio biológico a un modelo de trabajo de laboratorio. Esto se consigue gracias al empleo de materiales de impresión que, colocados en una cubeta apropiada, endurecen dentro de la cavidad bucal. Una vez retirada la cubeta de la boca, unida a los tránsfers de impresión, se acoplan los análogos ayudándonos del tornillo de retención, y posteriormente se realiza el vaciado en un material de escayola-yeso para obtener el modelo positivo donde quedará la réplica en la posición original que tiene el implante en boca.

Para cubeta cerrada

En el caso de la técnica de cubeta cerrada los tornillos de retención de los tránsfers no quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado habrá que retirar los tránsfers que se han quedado en boca y reposicionarlos manualmente en su hueco de origen dentro de la cubeta cerrada.

Para cubeta abierta

En el caso de la técnica de cubeta abierta los tornillos de retención de los tránsfers si quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado los tránsfers quedarán atrapados en la cubeta por lo que no habrá que reposicionarlos manualmente.

Material

Titanio grado V.

Destornillador

Hexagonal de 1.25 mm.

10 Ncm.

Sugerencia de utilización

Torque máximo de apriete

Un solo uso.

TRÁNSFER CUBETA CERRADA					
Ø 3.3 mm	Ø 4.1 mm	Ø 5.0 mm			
3E33CC	3E50CC				

TRÁNSFER CUBETA ABIERTA					
Ø 3.3 mm	Ø 5.0 mm				
3E33CA	3E41CA	3E50CA			

Análogos

Finalidad

Aditamento destinado por un lado a suplir y reproducir la posición del implante en boca sobre un modelo de trabajo una vez realizada la transferencia mediante una toma de impresión, y por otro a servir de modelo de conexión para la construcción en el laboratorio de la estructura de prótesis destinada a sustituir la(s) pieza(s) perdida(s).

Ø 3.3 mm	Ø 4.1 mm	Ø 5.0 mm
4EP33	4EP41	4EP50

Bases mecanizadas y UCLAS

Finalidad

Ambos aditamentos actúan como elemento directo al implante que una vez moldeado y colado sirve como estructura final del diente.

La utilización de las bases mecanizadas, garantizan un óptimo ajuste con la conexión del implante evitando posibles alteraciones procedentes del colado.

Contenido

Calcinable con base mecanizada de cromo cobalto más tornillo retentivo de clínica.

Disponible también en Plexi Glass.

Para plataforma Ø 3.3 mm: 5E33CAR 5E33CR Para plataforma Ø 4.1 mm: 5E41CAR Para plataforma Ø 5.0 mm: 5E50CAR 5E50CR

Material

Torreta: Plexi Glass.

Base mecanizada

Cromo cobalto.

Tornillo

Titanio grado V.

Ø 3.3 mm, Ø 4.1 mm / Ø 5.0 mm.

Tipo de restauración

Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 3.3 mm 30 Ncm como máximo. En plataforma 4.1/5.0 mm 35 Ncm como máximo.

Indicaciones

Base mecanizada antirrotatoria: indicada para coronas fijas atornilladas unitarias.

Base mecanizada rotatoria: indicada para restauraciones fijas multiples.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada. Mantenimiento en los controles clínicos.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio.

UCLA base mecanizada cromo cobalto

PLATAFORMA Ø 3.3 mm	A	PLATAFORMA Ø 4.1 mm / Ø 5.0 mm			
5E33BR	5E33BR 5E33BAR		5E41BAR		
	8	8	5		

UCLAS de titanio

Finalidad

Actúa como elemento directo al implante. Una vez fresada su parte superior se encera para realizar el colado. Posteriormente se cementa al pilar y se atornilla como estructura final del diente.

Contenido

Pilar UCLA de titanio más tornillo retentivo de clínica.

Indicaciones

Antirrotatorio: Indicado para coronas fijas atornilladas unitarias.

Rotatorio: Indicado para restauraciones fijas múltiples, o sobredentaduras.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada.

Material

Pilar y tornillo: Titanio grado V.

Plataformas

Ø 3.3 mm, Ø 4.1 mm / Ø 5.0 mm.

Tipo de restauración

Atornillada. Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 3.3 mm 30 Ncm como máximo. En plataforma 4.1/5.0 mm 35 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio.

Pilar UCLA titanio

PLATAFORM/ Ø 3.3 mm	A	PLATAFORMA Ø 4.1 mm / Ø 5.0 mm		
5E33TR	5E33TAR	5E41TR	5E41TAR	
THIRITING (THIRING O			

Pilares provisionales de peek

Finalidad

Actúan como elemento temporal directo al implante. Una vez moldeada su parte superior sirve como estructura provisional del diente.

Contenido

Pilar provisional de peek más tornillo retentivo de clínica.

Indicaciones

Pilar provisional de Peek Antirrotatorio: Indicado para coronas fijas atornilladas unitarias.

Pilar provisional de Peek Rotatorio: Indicado para restauraciones fijas múltiples.

Ventajas en la utilización

Los pilares provisionales nos dan a conocer si el tratamiento se ajustara a las necesidades del paciente, estableciendo un factor aproximado de la futura rehabilitación a realizar.

Material

Pilar: Peek. Tornillo: Titanio grado V.

Plataformas

Ø 3.3 mm, Ø 4.1 mm / Ø 5.0 mm.

Tipo de restauración

Provisional atornillada.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

10 Ncm.

Contraindicaciones de uso

En aquellos casos en los que se pueda ver comprometida la planificación de la carga/estética inmediata.

Nota

No utilizar durante un tiempo superior de 90 días.

Pilares provisionales de peek

PLATAFORM Ø 3.3 mm	A	PLATAFORMA Ø 4.1 mm / Ø 5.0 mm		
PKE33R PKE33AR		PKE41R	PKE41AR	
	\bigcirc			

Soluciones atornilladas anguladas

Finalidad

La solución BHS30, basada en una conexión llave-tornillo con capacidad de angulación de 0º a 30º, garantiza siempre la solución óptima a cada rehabilitación.
Esta tecnología aporta unas prestaciones mecánicas excepcionales, absoluta versatilidad y facilidad de uso, por lo que simplifica la labor protética al usuario y se adapta a sus necesidades, mejorando los costes del proceso y reduciendo la posibilidad de errores.

Contenido

Cada aditamento se comercializa por separado.

Indicaciones para rehabilitaciones

Antirrotatorio:

indicado para coronas fijas atornilladas unitarias, en implantes con divergencia.

Rotatorio:

indicado para restauraciones fijas atornilladas múltiples, en implantes con divergencia.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes con una importante reducción del tiempo y de los costes en materiales para su confección.

BHS30 es compatible con las técnicas de colado, Sobrecolado y mecanizado, gracias a sus bases mecanizadas de Cromo Cobalto y de Titanio.

Chimeneas disponibles en 10°, 20° y 30° de angulación.

Materia

Llave Inox. 17 4PH Stainless Steel Tornillo de Titanio grado V. Chimeneas de WIC (Resina Calcinable) Bases de Cromo Cobalto y Titanio grado V

Plataformas

Ø 3.3 mm/ Ø 4.1 mm

Tipo de rehabilitación

Atornillada

Destornillador

Conexión Cóncava Cuatrilobular

Torque de apriete tornillo

En plataforma 3.3 mm 30 Ncm como máximo. En plataforma 4.1/5.0 mm 35 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

El sistema está diseñado para mejorar la estética y funcionalidad de las prótesis atornilladas.

Unitaria Atornillada Angulada L6

TORNILLOS PARA Ø	3.3 mm	TORNILLOS PARA Ø 4.1 mm Y Ø 5.0 mm		
CLÍNICA LABORATORIO		CLÍNICA	LABORATORIO	
IP02035	IP02036	IP02001	IP02002	

PLATAFORMA Ø 3.3	LATAFORMA Ø 3.3 mm								
10°	20º	30º	10º	20º	30º				
IP07140	IP07138	IP07136	IP07141	IP07139	IP07137				
		_							
	\bigcirc								

Soluciones atornilladas anguladas

Unitaria Atornillada Angulada L6

PLATAFORMA Ø 4.1 mm								
10º	20º	30 º	10º	20º	30 º			
IP07007	IP07007 IP07004		IP07001 IP07008		IP07002			
		_	_	_	_			

PLATAFORMA Ø 5.0 mm							
10º	20º	30 º	10º	20º	30 º		
IP07065	IP07065 IP07063		IP07061 IP07008		IP07062		
					_		

Unitaria Atornillada Angulada L6

PLATAFORMA Ø 4.1 mm							
BASE DE CROMO COB	ALTO	BASE DE TITANIO					
IP03003	IP03004	IP03005	IP03006				
	8						
\Diamond		\Diamond					

CHIMENEA CALCINABLE PARA BASES MECANIZADAS							
10º	20º	30 º	10º	20º	30 º		
IP04009	IP04005	IP04001	IP04020	IP04019	IP04018		
					_		
		\bigcirc					

Soluciones atornilladas anguladas

Múltiple Atornillada para Transepitelial L6

TORNILLOS				
CLÍNICA	LABORATORIO			
IP02003	OX02004			
	•			

CILÍNDRO CALCINABLE, DIRECTO A TRANSEPITELIAL						
10º	20º	30º				
OX07009	OX07006	OX07003				
	1	1				

PLATAFORMA Ø 4.8 mm					
BASE CROMO COBALTO	BASE DE TITANIO				
OX03008	OX03009				

			CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
10º	20º	30º	10º	20º	30º	
OX04010	OX04006	OX04002	OX04012	OX04008	OX04004	
1						

The Perfect Match

Instrumental a medida

"Dentro de nuestro concepto de "simplicidad", el instrumental incluido en nuestro set M8 ha sido pensado para que el clínico cuente con todo lo que necesita de forma rápida y sencilla. Nos hemos asegurado de colocar indicadores para facilitar la ubicación de todos sus elementos.

Pilares tallables rectos

Finalidad

Actúa como elemento directo al implante. Una vez tallada su parte superior se encera para realizar el colado. Posteriormente se atornilla y se cementa la corona definitiva al pilar como estructura final del diente.

Contenido

Pilar tallable recto más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias o múltiples cementadas, directas a implantes.

Óptimo para nivelar la altura de emergencia de la corona en relación a los dientes adyacentes y espesores de los tejidos blandos.

Ventajas en la utilización

Facilita el control de la estética de la prótesis.

Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Material

Pilar tallable recto y tornillo: Titanio grado V.

Plataformas

Ø 3.3 mm, Ø 4.1 mm / Ø 5.0 mm.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 3.3 mm 30 Ncm como máximo. En plataforma 4.1/5.0 mm 35 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Nota

Se mecaniza con una cara plana en la parte superior cónica del pilar para poder posicionar la corona al cementar y guardar una línea oclusal óptima con los dientes adyacente. Disponibilidad de alturas: 2.0 mm y 4.0 mm.

Pilar tallable

PLATAFORMA Ø 3.3 mm		PLATAFORMA Ø 4.1 mm / Ø 5.0 mm		
H2	2 H4		H4	
6E33H2	6E33H4	6E41H2	6E41H4	

Pilares tallables angulados

Finalidad

Actúa como elemento directo al implante. Una vez tallada su parte superior se encera para realizar el colado corrigiendo la divergencia de la colocación de los implantes. A continuación, se atornilla y se cementa la corona definitiva al pilar como estructura final del diente.

Contenido

Pilar tallable angulado más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias, múltiples cementadas.

Permite la corrección en implantes divergentes, nivela las alturas de emergencia de las coronas en relación a los dientes adyacentes y permite una perfecta adaptación en distintos espesores de tejido blando.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes.

Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Materia

Pilar tallable angulado y tornillo: Titanio grado V.

Plataformas

Ø 3.3 mm, Ø 4.1 mm / Ø 5.0 mm.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

En plataforma 3.3 mm 30 Ncm como máximo. En plataforma 4.1/5.0 mm 35 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Disponibilidad de angulaciones 15° y 25°.

Pilar tallable angulado

PLATAFORM Ø 3.3 mm	A	PLATAFORMA Ø 4.1 mm / Ø 5.0 mm		
15°	25 °	15°	25°	
7E3315	7E3325	7E4115	7E4125	
		\bigcirc		

Pilares de bola

Finalidad

Pilar base para la reconstrucción protésica sobredentaduras implanto-muco-soportadas sobre bolas, para maxilares inferiores.

Indicaciones

Indicados en sector anterior mandibular para prótesis completas, sobre un mínimo aconsejado de cuatro pilares de bola. El casquillo metálico se ubica en la prótesis y contiene en su interior la retención de teflón / O-ring.

Aditamentos complementarios no incluidos

Conjunto 1. Anillo titanio + O-ring. Conjunto 2. Cazoleta titanio + Retención teflón.

Ventajas en la utilización

Permiten una angulación máxima de 25° a 30°.

Recomendaciones

No utilizar e maxilar superior. Se recomienda la colocación mínima de 4 implantes en maxilares inferiores. Con el sistema O-ring dejar expuesto supragingival el pilar de bola 1.5 mm.

Materia

Pilar y anillo de Titanio grado V, O-ring de elastómero natural y retención de teflón.

Plataformas

4.1 mm y 5.0 mm.

Torque de apriete 35 Ncm.

Pilar de bola

RETENCIÓN SISTEMA	O-RING	RETENCIÓN SISTEMA TEFLÓN		
Anillo metálico O-ring		Cápsula metálica	Retención de teflón	
8RAM	8ROR	8RCM	8RTF	

Notas

- Diámetro de la bola 2.50 mm.
 Disponibilidad de alturas: 2.0 mm y 4.0 mm.
- Realizar revisiones periódicamente para la sustitución de los teflones/O-ring.

Pilares LOCX®

Finalidad

Sistema de anclaje supragingival de eje resiliente para sobredentaduras sobre implantes. Consta de dos elementos: uno metálico que se atornilla directo a implante y una cazoleta metálica que va colocada en la prótesis, y contiene la retención de nylon según selección.

Contenido

Pilar LOCX®, posicionador/tránsfer de impresión, cazoleta de titanio, espaciador, retenciones: negra, azul, rosa, transparente y roja.

Aditamentos complementarios no incluidos en los sets

Retención de color naranja y verde.

Indicaciones

El sistema de anclaje "LOCX", está diseñado para la retención en dentaduras completas / parciales en implantes situados en la mandíbula o maxilar. Se recomienda un mínimo de 2 implantes en mandíbula. Se recomienda un mínimo de 4 implates en el maxilar superior.

Las retenciones con centrador color (transparente, azul y rosa) corrigen una divergencia de 10° por pilar, a diferencia de las retenciones sin centrador (roja, naranja y verde) que corrigen una divergencia de 20° por pilar.

La retención de color negro se utiliza exclusivamente para el proceso del rebase en clínica/laboratorio.

Ventajas en la utilización

Mayor versatilidad en la corrección de angulaciones y durezas en las retenciones.

Materia

Pilar y cazoleta de Titanio grado V, retenciones de nylón.

Plataformas

3.3 mm, 4.1 mm y 5.0 mm.

Torque de apriete

35 Ncm.

Contraindicaciones relativas de uso

En aquellos tratamientos donde se requiera una conexión rígida total.

En implantes con divergencias superiores a 20° respecto a la vertical.

Espacio protésico reducido.

Pacientes bruxistas.

Se contraindica el uso de los aditamentos LOCX* en pacientes que presenten alergia o sean hipersensibles a los materiales en que se fabrican los mismos.

Recomendaciones

En la medida de lo posible es aconsejable dejar expuesto supragingival el pilar aprox. 1.5 mm, para evitar las presiones de las retenciones.

Se recomienda realizar la prótesis en el laboratorio para obtener un óptimo acabado de la misma. Se debe polimerizar la resina para endurecerla y eliminar los monómeros para evitar irritaciones en la mucosa.

Notas

- Se recomienda realizar controles periódicos al paciente hasta conseguir un óptimo ajuste entre el tejido blando y la prótesis.
- Realizar revisiones periódicamente para la sustitución de las retenciones.

Pilares LOCX®

PLATAFOR	RMA Ø 3.3		PLATAFORMA Ø 4.1							
Н1	H2	Н3	H4	Н5	Н1	H2	Н3	Н4	Н5	
9E33H1	9E33H2	9E33H3	9E33H4	9E33H5	9E41H1	9E41H2	9E41H3	9E41H4	9E41H5	9E41H6
- Arma										

Retenciones LOCX®

RETENCION	RETENCIONES								
			Divergen hasta 10°				Divergen hasta 20°		
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra 0 Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9R00L	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
	0								

Instrumental LOCX®

Aditamentos LOCX®

Pilares transepiteliales

Finalidad

Aditamento mecanizado que, fijado directamente al implante, realiza la función principal de actuar como elemento intermedio entre el implante y la prótesis. La existencia en varias alturas, 1.0 mm, 2.0 mm, 3.0 mm y 4.0 mm en pilares rectos permiten elevar el plano de asentamiento de la prótesis cuando existe un grosor de tejido blando que no es adecuado para realizar una conexión directa a implante.

Sus angulaciones de 17° y 30°, permiten la corrección de disparalelismos entre implantes o bien, entre implante y dientes adyacentes.

Aditamentos complementarios incluidos

Los pilares transepiteliales angulados se suministran con posicionador y tornillo de retención.

Indicaciones

- Indicados para rehabilitaciones unitarias y múltiples.
- Para técnicas de carga o estética inmediata.
- En los casos comprometidos donde la colocación de otros tipos de aditamentos protésicos son un alto riesgo para la estética del paciente.
- En los casos con déficit importante de la masa osea elástica mandibular, donde la colocación de implantes para otros tipos de rehabilitación supone un alto riesgo de fractura osea.
- Importante: En casos unitarios solo se pueden utilizarlos pilares transepiteliales rectos.

Material

Titanio grado V.

Materiales torretas

Provisional: Peek, Titanio: Titanio grado V Calcinable: Plexi Glass.

Plataformas

3.3 mm, 4.1 mm y 5.0 mm.

Llaves de torque

Pilares rectos: Llave transepitelial. Pilares angulados: 1.25 mm Hexagonal.

Torques de apriete

Pilares rectos: 35 Ncm.

Pilares angulados

Troque de apriete tornillo: En plataforma 3.3 mm 30 Ncm como máximo. En plataforma 4.1/5.0 mm 35 Ncm como máximo.

Tapones pilares de cicatrización

0 Ncm.

Tornillo retención definitivo

15 Ncm.

Ventajas en la utilización

Sus angulaciones permiten la corrección de disparalelismos entre implantes y/o dientes adyacentes.

Solución mínimamente invasiva con restauración fija de arcada completa para la técnica del All-on-four* colocando dos transepiteliales angulados en zona posterior y dos de rectos en zona anterior por arcada. Esta técnica permite rehabilitar una arcada completa con tan solo 4 implantes sin necesidad de realizar injertos óseos gracias a la inclinación de los transepiteliales posteriores.

Contraindicaciones relativas de uso

Estaría contraindicado en todos los casos en los que se considere mejor el uso de otro tipo de rehabilitación.

Recomendaciones

Para la planificación es necesario utilizar el tránsfer de impresión y análogo específicos para el pilar transepitelial.

Para la rehabilitación de transepiteliales unitarios, utilizar análogo, tránsfer de impresión y torretas antirrotatorias.

En caso de realizar una estética inmediata, se recomienda utilizar el pilar provisional de Peek.

Transepitelial recto

PLATAFORMA Ø 3.3 m	ım		PLATAFORMA Ø 4.1 mm / Ø 5.0 mm		
H2	Н3	Н4	H2	Н3	H4
MUE33H2	MUE33H3	MUE33H4	MUE41H2	MUE41H3	MUE41H4

Transepitelial angulado estándar

PLATAFORMA Ø 4.1 mm / Ø 5.0 mr	PLATAFORMA Ø 4.1 mm / Ø 5.0 mm		
17°	30°		
MUE4117	MUE4130		

Tapón de cicatrización transepitelial

Tránsfer transepitelial

Análogo trasepitelial

Torreta transepitelial

PROVISIONAL DE PEE	K	DE TITANIO		CALCINABLE	
Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)	Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)	Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilares recto)
MUIEPKR	MUIEPKAR	MUIETR	MUIETAR	MUIECR	MUIECAR

Llave para transepitelial

MANUAL DE CONEXIÓN A CARRACA	C/A MECÁNICO	
YMULLTCR	YMULLTCA	

The Perfect Match

Conexiones precisas

Dado que una de nuestras principales misiones es la de de pensar y ofrecer nuevas soluciones protésicas, hemos incorporado en nuestra familia de pilares transipiteliales rectos, torretas antirrotatorias para casos unitarios.

Las tenemos disponibles en los siguientes materiales: En Peek para restauraciones provisionales. En Plexi Glass, para la realización de un mejor colado. En Titanio para quienes deseen un inmejorable ajuste.

Importante

Éstas solo están disponibles para pilares transipiteliales rectos.

Oxtein L6 Soluciones CAD CAM

Scan Body

Finalidad

Aditamento utilizado como elemento de medición para transferir virtualmente la posición del implante en el modelo de trabajo o directo desde boca, y así posteriormente proceder a la elaboración de la prótesis personalizada implantosoportada vía CAD CAM. También denominado localizador o marker.

Contenido

Scan body más tornillo retentivo.

Elementos complementarios no incluidos

Biblioteca digital correspondiente a la conexión.

Indicaciones

Realización de estructuras implantosoportadas directas a implante o transepiteliales. Colocación en boca para la toma de impresión intraoral en clínica, o colocación en el modelo de trabajo para escaneado de éste en laboratorio. Recomendable utilizar tantos scan bodies como implantes haya en la restauración para obtener mayor precisión y rapidez.

Ventajas en la utilización

Fácil lectura, sin necesidad de sprays. Sistema compatible con los principales softwares cad:

- 3shape.
- Exocad.
- Dental Wings.

Sugerencia de uso

En su uso en clínica o en boca, tener en cuenta la altura de la encía, ya que podría dificultar la lectura óptima del localizador.

Material

Scan Body Peek. Tornillo Titanio Grado V.

Tipo de destornillador Hexagonal 1.25 mm.

Torque de apriete tornillo

Scan Bodies

TRANSEPITELIAL					
Longitud 8.5 mm		Longitud 10 mm			
CLMURI CLMUARI		CLMUR	CLMUAR		

Análogo para impresora 30

DIRECTO A IMPLANTE				
Plataforma Ø 3.3 mm	Plataforma Ø 4.1 mm	Plataforma Ø 5.0 mm		
4EP333D	4EP413D	4EP503D		

TRANSEPITELIALES			
Rotatorio	Antirrotatorio		
MUU4R3D	MUU4AR3D		

Oxtein L6 Soluciones CAD CAM

Interfases

Finalidad

Elemento directo al implante que, una vez cementado a la corona o puente, sirve como estructura final de la restauración.

Contenido

Interfase más tornillo retentivo.

Indicaciones

Interfase Antirrotatoria: Indicada para coronas fijas atornilladas unitarias. Interfase Rotatoria: Indicada para restauraciones fijas múltiples, o sobredentaduras.

Utilizar junto al scan body y biblioteca digital correspondiente para la fabricación de la prótesis definitiva.

Ventajas en la utilización

Garantiza un ajuste óptimo a la conexión del implante. Mejor distribución de las cargas.

Contraindicaciones de uso

En casos de espacio oclusal muy limitado.

Material

Interfases y tornillo: Titanio Grado V.

Tipo de destornillador

Hexagonal 1.25 mm.

Torque de apriete tornillo

Troque de apriete tornillo: En plataforma 3.3 mm 30 Ncm como máximo. En plataforma 4.1/5.0 mm 35 Ncm como máximo.

Transepiteliales

15 Ncm.

Interfases

DIRECTO A IMPLANTE	:				
Plataforma Ø 3.3 mm		Plataforma Ø 4.1 mm		Plataforma Ø 5.0 mm	
CIE33R	CIE33AR	CIE41R	CIE41AR	CIE350R	CIE50AR
\bigcirc	\bigcirc				

TRANSEPITELIAL			
Rotatorio / multiples	Antirrotatorio / unitario		
CIMUR	CIMUAR		

Oxtein L6 Tornillos

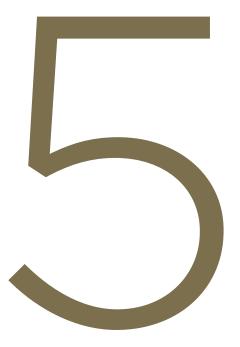
Tornillo de cierre

Características generales

Tras la inserción de los implantes, cubiertos o parcialmente cubiertos por tejido blando, y durante la fase de reparación de los tejidos de sostén, debe existir una protección de la conexión del implante para evitar su obstrucción antes de la carga de la supraestructura o prótesis. Para ello se coloca roscado el tornillo de cierre.

Ø 3.3 mm	Ø 4.1 mm	Ø 5.0 mm
1ETC33	1ETC41	1ETC50

Tornillos L6


PLATAFORMA	A Ø 3.3 mm		PLATAFORMA	Ø 4.1 mm / Ø 5.	nm / Ø 5.0 mm TRANSEPITEL			
Tornillo retentivo clínica	Tornillo retentivo angulados	Tornillo laboratorio	Tornillo retentivo clínica	Tornillo retentivo angulados	Tornillo laboratorio	Tornillo retentivo torretas	Tornillo laboratorio	Tornillo pilares angulados
1IETR	1ETRPA33	1IETL	1ETR	1ETRPA41	1ETL20	MUIETR14	MUU1TL	1ETRPA41

Oxtein N6

Contenido

Implante Uxtein N6	254
Secuencia de fresado	256
Sets quirúrgicos	258
Instrumental	260
Protocolo quirúrgico	266
Soluciones Protésicas	270
Pilar de cicatrización	27E
Tránsfer de impresión	279
Análogos	280
Bases mecanizadas y UCLAS	280
UCLAS de titanio	282
Pilares provisionales de peek	284
Soluciones anguladas	28E
Pilares tallables rectos	290
Pilares tallables angulados	292
Pilares de bola	294
Pilar LOCX	29E
Pilares transepiteliales	300
Soluciones CAD CAM	306
Scan body	30E
Interfases	308
Tornillos	310

Oxtein N6

Su geometría cónica autorroscante asegura una óptima estabilidad primaria facilitando los protocolos de carga inmediata.

Titanio

Grado IV cold worked.

Tratamiento superficial Oxigenna^a

"Surface argón system".

Conexión

Hexágono externo.

Plataformas

Ø 4.1 mm Ø 5.0 mm.

Tornillo de cierre

Incluido y codificado por color.

Conexión hexagonal externa

2.7 x 0.7 en todas las plataformas.

Tratamiento superficial hasta la plataforma

Ápice cónico y autorroscante con forma helicoidal

Óptima inserción del implante y anclaje en el hueso.

Microespiras coronales

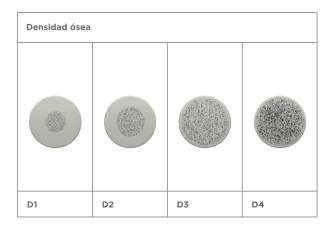
Para obtener una mayor superficie de contacto con el hueso.

Morfología cónica

Mayor estabilidad primaria.

Transportador 3 en 1

Transportador - Tránsfer de impresión para cubeta cerrada Pilar tallable para cementar con codificación de color identificativo del diámetro del implante.


REFERENCIAS SISTEMA TRANSPORTADOR							
Ø vs H	■ Ø 3.5 mm	■ Ø 4.0 mm	■ Ø 5.0 mm				
H 6.0 mm	_	N64006T	N65006T				
H 8.5 mm	N63508T	N64008T	N65008T				
H 10.0 mm	N63510T	N64010T	N65010T				
H 11.5 mm	N63511T	N64011T	N65011T				
H 13.0 mm	N63513T	N64013T	N65013T				
H 14.5 mm	N63514T	N64014T	_				
Plataforma Conexión	Ø 4.1 mm		Ø 5.0 mm				

Oxtein N6 Secuencia de fresado

Secuencia detallada paso a paso

- 1 Fresa lanceolada a 850 r.p.m.
- **2** Fresa piloto Ø 2.35 a 850 r.p.m.
- **3** Fresa Ø 2.7 a 750 r.p.m.
- 4 Fresa final Ø 3.1 para implante de Ø 3.5 a 750 r.p.m.
- Macho de roscar Ø 3.5 mm. Utilizar solo en casos de hueso D1 y D2.
- 6 Fresa final Ø 3.5 para implante de Ø 4.0 a 650 r.p.m.
- 7 Macho de roscar Ø 4.0 mm. Utilizar solo en casos de hueso D1 y D2.
- **8** Fresa intermedia \varnothing 4.0 para implante de \varnothing 5.0 a 550 r.p.m.
- 9 Fresa final Ø 4.5 para implante de Ø 5.0 a 450 r.p.m
- **10** Macho de roscar Ø 5.0 mm. Utilizar solo en casos de hueso D1 y D2.

Recomendaciones importantes

Utilizar irrigación abundante.

No sobrepasar los 35-45 Ncm, en la inserción del implante. Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso.

*Macho de roscar

Se recomienda el uso de machos de roscar para la colocación de implantes cónicos en huesos D1 y D2. Disponibles en conexión a llave carraca dinamométrica.

Secuencia para implante de Ø 3.5 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- **4** Fresa final Ø 3.1 mm para implante de Ø 3.5 mm a 750 r.p.m.
- 5 Macho de roscar Ø 3.5 mm.

Diámetro implante	Densidad ósea	1	2	3	4	5
3.5 mm	D1 - D2	•	•	•	•	•
	D3 - D4	•	•	•	•	

Secuencia para implante de Ø 4.0 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- **6** Fresa final Ø 3.5 mm para implante de Ø 4.0 mm a 650 r.p.m.
- 7 Macho de roscar Ø 4.0 mm.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7
4.0 mm	D1 - D2	•	•	•	•		•	•
	D3 - D4	•	•	•	•		•	

Secuencia para implante de Ø 5.0 mm

- 1 Fresa lanceolada a 850 r.p.m.
- 2 Fresa piloto Ø 2.35 mm a 850 r.p.m.
- **3** Fresa Ø 2.7 mm a 750 r.p.m.
- 4 Fresa Ø 3.1 mm a 750 r.p.m.
- 6 Fresa Ø 3.5 mm a 650 r.p.m.
- 8 Fresa Ø 4.0 mm a 550 r.p.m.
- **9** Fresa final \varnothing 4.5 mm para implante de \varnothing 5.0 mm a 450 r.p.m.
- 10 Macho de roscar Ø 5.0 mm.

Diámetro implante	Densidad ósea	1	2	3	4	5	6	7	8	9	10
5.0 mm	D1 - D2	•	•	•	•		•		•	•	•
	D3 - D4	•	•	•	•		•		•	•	

Oxtein N6 Sets quirúrgicos

Set plus

YUSQP - Set o	quirúrgico plus incluye:
YUCRD	Llave carraca fija y dinamométrica de titanio
YULLA	Llave acodada de extremo abierto
YUMED	Medidor universal
IP2252 + YUDCRC	Mango atornillador + Atornillador 1.25 corto conexión carraca
YUDCRL	Atornillador 1.25 largo conexión carraca
YUDCA	Atornillador 1.25 conexión C/A
YUAM	Adaptador manual
YUACRL	Adaptador carraca largo
YUACAC	Adaptador C/A corto
YUACAL	Adaptador C/A largo
IP2255	Prolongador / Extensor
YUFRL	Fresa lanceolada
YNFR23L	Fresa cónica piloto larga con tope Ø 2.35 mm
YNFR27L	Fresa cónica larga con tope Ø 2.7 mm
YNFR31L	Fresa cónica larga con tope Ø 3.1 mm
YNFR35L	Fresa cónica larga con tope Ø 3.5 mm
YNFR40L	Fresa cónica larga con tope Ø 4.0 mm
YNFR45L	Fresa cónica larga con tope Ø 4.5 mm
YLFR23L	Fresa cilíndrica piloto larga con tope Ø 2.3 mm
YLFR27L	Fresa cilíndrica larga con tope Ø 2.75 mm
YLFR31L	Fresa cilíndrica larga con tope Ø 3.1 mm

YLFR36L	Fresa cilíndrica larga con tope Ø 3.6 mm
YLFR41L	Fresa cilíndrica larga con tope Ø 4.1 mm
YLFR44L	Fresa cilíndrica larga con tope Ø 4.4 mm
YLFR48L	Fresa cilíndrica larga HD Ø 4.8 mm
Y1MR35C	Macho de roscar carraca Ø 3.5 mm para M12
Y1MR40C	Macho de roscar carraca Ø 4.0 mm para M12
Y1MR45C	Macho de roscar carraca Ø 4.5 mm para M12
Y1MR50C	Macho de roscar carraca Ø 5.0 mm para M12
YNMR35	Macho de roscar carraca Ø 3.5 mm para N6
YNMR40	Macho de roscar carraca Ø 4.0 mm para N6
YNMR50	Macho de roscar carraca Ø 5.0 mm para N6
Y1DRMQC	Driver mecánico directo a implante M12 corto Ø 2.82 mm
Y1DRMLC	Driver mecánico directo a implante M12 corto Ø 3.80 mm
Y3DR33	Driver mecánico directo a implante L6 2.3 x 1.0
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7x0.7
Y56DR	Driver mecánico directo a implante L35
YUTFRH60	Tope H 6 para fresas
YUTFRH85	Tope H 8.5 para fresas
YUTFRH10	Tope H 10 para fresas
YUTFRH11	Tope H 11.5 para fresas
YUTFRH13	Tope H 13 para fresas
YUTFRH14	Tope H 14.5 para fresas

Set basic

YNSQB - Set ba	YNSQB - Set basic N incluye:					
YUAM Adaptador manual						
YUACRL	Adaptador carraca largo					
YUACAC	Adaptador C/A corto					
YUDML	Atornillador largo manual fijo 1.25 mm					
IP2255	Prolongador / Extensor					
YEDR4150	Driver mecánico directo a implante N6 y L6 2.7 x 0.7					
Y56DR	Driver mecánico directo a implante para L35					
YNMP2327	Medidor prof. / paralelizador Ø 2.3 mm / 2.7 mm					
YNMP3135	Medidor prof. / paralelizador Ø 3.1 mm / 3.5 mm					

Y1DRMQC	Driver mecánico directo a implante M12 corto Ø 2.82 mm
Y1DRMLC	Driver mecánico directo a implante M12 corto Ø 3.80 mm
YUFRL	Fresa lanceolada
YNFR23C	Fresa cónica piloto corta de Ø 2.3 mm
YNFR27C	Fresa cónica corta Ø 2.7 mm
YNFR31C	Fresa cónica corta Ø 3.1 mm
YNFR35C	Fresa cónica corta Ø 3.5 mm
YNFR40C	Fresa cónica corta Ø 4.0 mm
YNFR45C	Fresa cónica corta Ø 4.5 mm

Importante

Se recomienda el uso de machos de roscar para la colocación de implantes cónicos en huesos D1 y D2. (No incluidos en el set basic).

Longitud máxima de colocación de implante con las fresas incluidas en el set basic: 13.0 mm.

Oxtein N6 Instrumental

Fresa lanceolada

Fresa corta

FRESA PILOTO CORTA CÓNICA	FRESA QUIRÚRGICA CORTA CÓNICA							
Ø 2.35 mm	Ø 2.7 mm	Ø 3.1 mm	Ø 3.5 mm	Ø 4.0 mm	Ø 4.5 mm			
YNFR23C	YNFR27C	YNFR31C	YNFR35C	YNFR40C	YNFR45C			

Fresa larga

FRESA PILOTO LARGA CÓNICA	FRESA QUIRÚRGICA LARGA CÓNICA				
Ø 2.35 mm	Ø 2.7 mm	Ø 3.1 mm	Ø 3.5 mm	Ø 4.0 mm	Ø 4.5 mm
YNFR23L	YNFR27L	YNFR31L	YNFR35L	YNFR40L	YNFR45L

Tope fresas largas

H 6.0 mm	H 8.5 mm	H 10.0 mm	H 11.5 mm	H 13.0 mm	H 14.5 mm
YUTFRH60	YUTFRH85	YUTFRH10	YUTFRH11	YUTFRH13	YUTFRH14

Oxtein N6 Instrumental

Bisturí circular de conexión contra ángulo

Ø 3.3 mm	Ø 3.5 mm	Ø 3.75 mm	Ø 4.0 mm	Ø 4.25 mm	Ø 4.5 mm	Ø 4.8 mm	Ø 5.0 mm
IP5277A	IP5286A	IP5279A	IP5280A	IP5282A	IP5285A	IP5287A	IP5283A
500 0	0.35	0.000	0.00	907/0	0.40	0.48	0.00

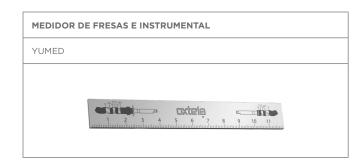
Macho de roscar

Medidor de profundidad y pin de paralelismo

Driver

Prolongador de fresas

Adaptador


MANUAL	CARRACA CORTO	CARRACA LARGO	CONTRA-ÁNGULO CORTO	CONTRA-ÁNGULO LARGO
YUAM	YUACRC	YUACRL	YUACAC	YUACAL

Oxtein N6 Instrumental

Llaves

LLAVE DE EXTREMO ABIERTO	LLAVE CARRACA DE TITANIO FIJA Y DINAMOMÉTRICA (20 A 55 Ncm.)
YULLA	YUCRD
axteiā	

Medidor

Punta atornillador

MANUAL INTERCAMBIABLE CONEXIÓN CARRACA			MANUAL FIJO		MECÁNICO
Larga	Media	Corta	Larga	Corta	Media
YUDCRL	YUDCRM	YUDCRC	YUDML	YUDMC	YUDCA

Juntas para instrumental 10 unidades

Oxtein N6 Protocolo quirúrgico

Preparación de los tejidos blandos y de la zona cortical

1 Con bisturí circular

Se inicia la secuencia quirúrgica con el bisturí circular correspondiente al Ø de implante planificado a una velocidad de giro de 350 r.p.m.

Una vez realizado el corte, se extrae el tejido blando sobrante mediante periostotomo y/o pinza.

Se recomienda el uso de una férula quirúrgica para continuar con la osteotomía.

² Con incisión de colgajo

Se inicia la incisión levantado el colgajo con la ayuda de separadores gingivales.

Se recomienda el uso de una férula quirúrgica una vez haya acceso a la cresta ósea.

En casos de encontrar crestas óseas estrechas, se aconseja regularizarla para aumentar la anchura vestíbulo-lingual o palatina.

³ Secuencia quirúrgica inicial con fresa lanceolada

Se inicia la secuencia con la fresa lanceolada, con una velocidad de giro de 850 r.p.m, hasta traspasar la cortical ósea centralizando el eje para las siguientes osteotomías.

Se insertará por la guía de la férula quirúrgica en caso de usarse ésta.

Importante

Desinfectar, limpiar, esterilizar según protocolo y comprobar el instrumental antes de cada uso.

Es necesario abundante irrigación en todas las osteotomías y procesos hasta la inserción del implante.

Para una mayor seguridad se recomienda el uso de los topes de fresas.

Preparación del lecho óseo

- Después de haber finalizado la preparación de la zona gingival y cortical, se procede a realizar la osteotomía con la fresa piloto de Ø 2.35 mm a una velocidad de giro de 850 r.p.m hasta la longitud planificada.
- 2 A continuación, se procede a realizar la siguiente osteotomía con la fresa intermedia de Ø 2.7 mm a una velocidad de giro de 750 r.p.m profundizando hasta la longitud planificada.

Secuencia final

- 3 Longitud de fresado para implante Oxtein N6 Ø 3.5 mm Después de haber concluido la fase anterior, se procede a realizar la osteotomía final para el implante Oxtein N6 Ø 3.5 mm se realiza con la fresa de Ø 3.1 mm, siguiendo con la velocidad de giro de 750 r.p.m profundizando hasta la longitud planificada.
- 4 Longitud de fresado para implante Oxtein N6 Ø 4.0 mm La osteotomía final para el implante Oxtein N6 Ø 4.0 mm se realiza con la fresa de Ø 3.5 mm, a una velocidad de giro de 650 r.p.m hasta la longitud planificada.
- 5 Previo a la secuencia final para el implante de \varnothing 5.0 mm, pasar la fresa de \varnothing 4.0 mm a una velocidad de giro de 550 r.p.m.
- 6 Longitud de fresado para implante Oxtein N6 Ø 5.0 mm La osteotomía final para el implante Oxtein N6 Ø 5.0 mm se realiza con la fresa de Ø 4.5 mm, a una velocidad de giro de 450 r.p.m hasta la longitud planificada.

Puntos importantes a tener en cuenta

Después de haber realizado las primeras osteotomías con las fresas correspondientes, se debe insertar el medidor de profundidad/paralelizador para comprobar la longitud de fresado y paralelismo obtenido.
 Si se detectan calidades óseas con D1 y D2, en zonas mandibulares y maxilares anteriores y corticales gruesas, se debe conformar el lecho óseo mediante el macho de roscar correspondiente al Ø de implante a colocar.
 Disponibles con conexión a llave carraca.

Oxtein N6 Protocolo quirúrgico

Proceso de inserción del implante Oxtein N6 con transportador

- 1 Abrir la caja del implante con guantes de nitrilo por la zona troquelada.
- 2 Extraiga la bandeja en la que está depositado el blíster del implante.
- 3 Posteriormente, en condiciones estériles, desprecintar el blíster por la esquina no redondeada hasta liberar el vial de plástico con el tapón de titanio que hay en su interior.
- 4 Depositar el vial en campo estéril sin tocarlo con los guantes.
- 5 Seguidamente retirar el tapón de titanio que va a presión. (No desecharlo ya que incluye el tornillo de cierre).
- **6** Extraer axialmente del interior del vial el soporte plástico dónde se encuentra el implante con su transportador.
- 7 No tocar el implante con los guantes para evitar su contaminación y sujetando firmemente el soporte plástico, acoplar los hexágonos del transportador y del adaptador con movimiento rotacional y axial hasta oír un clic.
- 8 Una vez conexionado, extraer el implante de su soporte con un ligero movimiento ascendente.
- **9** Finalmente llevar el implante a boca para iniciar su inserción.

Importante

Antes de proceder a realizar la inserción del implante, leer detenidamente las instrucciones de uso.

No sobrepasar los 45 Ncm en la inserción del implante.

The Perfect Match

Tu éxito también es el nuestro

Cada uno de los envases de nuestros implantes Oxtein incluye no solo las indicaciones de uso que detallan la forma correcta de utilización de cada uno de ellos, sino que adicionalmente también contiene indicaciones prácticas para los pacientes que facilitarán el trabajo del clínico en el proceso de recuperación post-operatoria de sus pacientes.

Así mismo encontrará también en cada uno de ellos la carta de garantía de por vida de nuestros implantes, y por supuesto el pasaporte implantológico que podrá ofrecer a sus pacientes como certificado de trazabilidad.

Plataforma 4.1 mm Plataforma 5.0 mm

Análogos

		TRANSEPITE	LIAL	PILAR LOCX®	3D		
4.1	4EP41	MUU4R	MUU4AR	9U4	4EP413D	MUU4R3D (Transep)	MUU4AR3D (Transep)
5.0	4EP50	_	_		4EP503D	_	_

Tránsfer de impresión

	DIRECTOS A IMPLANTE		TRANSEPITELIAL	PILAR LOCX®	
	сс	CA	CA		CA
4.1	3E41CC	3E41CA	MUU3CAR	MUU3CAAR	9U3
5.0	3E5OCC	3E5OCA			

Pilares de cicatrización

		TRANSEPITELIAL
4.1	2E41H3	MUIEPLN
4.1	2E41H5	
4.1	2E41H7	
5.0	2E50H3	
5.0	2E50H5	


Unitaria

	ATORNILLAD	A				
	UCLA			Provisional	Transepitelial	
	Calcinable	Base mecanizada	Titanio		Recto	
4.1	5E41CAR	5E41BAR	5E41TAR	PKE41AR	MUE41H2	
4.1					MUE41H3	4
5.0	5E50CAR				MUE41H4	

Unitaria Atornillada Angulada N6

Plataforma 4.1 mm Plataforma 5.0 mm

Unitaria Atornillada Angulada N6

	CILÍNDRO CALCINABLE						
	10°	20º	30º				
4.1	IP07007	IP07004	IP07001				
5.0	IP07065	IP07063	IP07061				
		1					
	\Diamond	\bigcirc	\bigcirc				

CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)				CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
10º	20º	30°	10º	20º	30º		
IP04009	IP04005	IP04001	IP04020	IP04019	IP04018		
	1	/			/		
В	ase Cromo Co	balto	Base TI				
	IP03003			IP03005			
\Diamond							
	10° IP04009	(SOBRECOLADO O COLA SOLDADURA) 10º 20º IP04009 IP04005 Base Cromo Co	10º 20º 30º 1P04009 1P04001 1P04001 1P04001 1P04005 1P04001 1P04005 1P04001 1P0400	(SOBRECOLADO O COLADO + CHIMENEZ (COLADO) 10º 20º 30º 10º IP04009 IP04005 IP04001 IP04020 Base Cromo Cobalto	CHIMENEA CALCINABLE (COLADO + CEMENTADO		

Unitaria / Múltiple

	CEMENTADA					
	Pilar recto		Pilar angulado			
	H2 mm H4 mm		15°	25°		
.1 .0	6E41H2	6E41H4	7E4115	7E4125		

Múltiple

	ATORNILLADA			
	UCLA	Provisional		
	Calcinable			
.1	5E41CR	5E41BR	5E41TR	PKE41R
0	5E50CR			

Múltiple Atornillada Angulada N6

	CILÍNDRO CALCINABLE					
	10º	20º	30º			
4.1	IP07008	IP07005	IP07002			
5.0	IP07066	IP07064	IP07062			
		0				

	CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)			CHIMENEA CALCINABLE (COLADO + CEMENTADO)				
	10º 20º 30º		10º	20º	30º			
	IP04009	IP04005	IP04001	IP04020	IP04019	IP04018		
		1	1		1	1		
	Е	Base Cromo Co	balto		Base TI			
4.1		IP03004			IP03006			

Plataforma 4.1 mm Plataforma 5.0 mm

Múltiple

	ATORNILLADA						
	Transepitelial recto						
	H2 mm	H3 mm	H4 mm				
4.1	MUE41H2	MUE41H3	MUE41H4				
5.0							

	ATORNILLADA				
	Transepitelial angulado				
	17°	30°			
4.1 5.0	MUE4117	MUE4130			

ATORNILLADA					
Aditamentos transepiteliales					
Calcinable	Titanio	Provisional Peek			
MUIECR	MUIETR	MUIEPKR			

Múltiple Atornillada para Transepitelial N6

	TORNILLOS					
	IP02003 (Tor. Clínica)		IP02004 (Tor. Lab.)			
.8		9		•		

Múltiple Atornillada para Transepitelial N6

	CILÍNDRO CALCINABLE						
	10°	20º	30º				
4.8	IP07009	IP07006	IP07003				
	1	1					

	CHIMENEA CALCINABLE (SOBRECOLADO O COLADO + SOLDADURA)			CHIMENEA CALCINABLE (COLADO + CEMENTADO)		
	10°	20º	30°	10º	20º	30º
	IP04010	IP04006	IP04002	IP04012	IP04008	IP04004
		1	1		1	
	Ва	ase Cromo Cob	alto		Base TI	
3	IP03008			IP03009		

Sobredentadura

	PILAR DE BOLA	A	RETENCIONES				
	H2 mm	H4 mm	8RAM	8ROR	8RCM	8RTF	
1.1 5.0	8E41H2	8E41H4					

	PILAR LOCX®					
	H1	H2	Н3	H4	Н5	Н6
4.1	9E41H1	9E41H2	9E41H3	9E41H4	9E41H5	9E41H6

			Divergen hasta 10°				Divergen hasta 20°		
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra O Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)
9RPP2	9UE	9RCM	9ROOL	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A
	0								

CAD CAM

	SCAN BODY						INTERFASE			
	Longitud 8.5 mm	Longitud 10 mm	Transepitelial				Directo a implante		Transepitelial	
				Longitud 8.5 mm		10 mm				
4.1	CL4150I	CL4150	CLMURI	CLMUARI	CLMUR	CLMUAR	CIE41R	CIE41AR	CIMUR	CIMUAR
5.0							CIE50R	CIE50AR		
	ı	I								

The Perfect Match

Conexiones precisas

Nuestras conexiones hexagonales internas paralelas, estarán pensadas para ofrecer un óptimo ajuste entre implante y aditamento protésico, tanto en rotación como en ajuste axial.

Su pequeño chaflán inicial en la zona interna de la conexión, está diseñado y pensado para evitar la infiltración de restos biológicos.

Pilar de cicatrización

Características generales

Una vez finalizada la fase de reparación de los tejidos de sostén, debe existir una vía mucosa o túnel mucoso de conexión del implante a la estructura secundaria o prótesis. El pilar de cicatrización se encarga de generar ese túnel mucoso, y para ello es colocado roscado sobre el implante.

Materia

Titanio grado V.

Destornillador

Hexagonal de 1.25 mm.

Sugerencia de utilización

Torque máximo de apriete 10 Ncm Un solo uso.

Pilar cicatrización

PLATAFORMA	Ø 4.1 mm	PLATAFORMA Ø 5.0 mm			
нз	Н5	Н7	Н3	H5	
2E41H3	2E41H5	2E41H7	2E50H3	2E50H5	

Tránsfer de impresión

Características generales

Disponibilidad para la técnica de cubeta abierta y cerrada.

Los tránsfers de impresión se suministran con su respectivo tornillo de retención: Para cubeta abierta tornillo largo.
Para la cubeta cerrada tornillo corto.

Finalidad

Aditamento que, conexionado a la porción superior o coronal del implante en el interior de la cavidad bucal y fijado mediante un tornillo pasante de rosca, sirve para realizar la transferencia de la posición del implante en el medio biológico a un modelo de trabajo de laboratorio. Esto se consigue gracias al empleo de materiales de impresión que, colocados en una cubeta apropiada, endurecen dentro de la cavidad bucal. Una vez retirada la cubeta de la boca, unida a los tránsfers de impresión, se acoplan los análogos ayudándonos del tornillo de retención y posteriormente se realiza el vaciado en un material de escayola-yeso para obtener el modelo positivo donde quedará la réplica en la posición original que tiene el implante en boca.

Para cubeta cerrada

En el caso de la técnica de cubeta cerrada los tornillos de retención de los tránsfers no quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado habrá que retirar los tránsfers que se han quedado en boca y reposicionarlos manualmente en su hueco de origen dentro de la cubeta cerrada.

Para cubeta abierta

En el caso de la técnica de cubeta abierta los tornillos de retención de los tránsfers si quedan expuestos, por lo que una vez retirada la cubeta con el material de impresión fraguado los tránsfers quedarán atrapados en la cubeta por lo que no habrá que reposicionarlos manualmente.

Material

Titanio grado V.

Destornillador

Hexagonal de 1.25 mm.

Torque máximo de apriete 10 Ncm.

Sugerencia de utilización

Un solo uso.

Tránsfer CUBETA CERRADA			
Ø 4.1 mm	Ø 5.0 mm		
3E41CC	3E50CC		

Tránsfer CUBETA ABIERTA			
Ø 4.1 mm	Ø 5.0 mm		
3E41CA	3E50CA		

Análogos

Finalidad

Aditamento destinado por un lado a suplir y reproducir la posición del implante en boca sobre un modelo de trabajo una vez realizada la transferencia mediante una toma de impresión, y por otro a servir de modelo de conexión para la construcción en el laboratorio de la estructura de prótesis destinada a sustituir la(s) pieza(s) perdida(s).

Ø 4.1 mm	Ø 5.0 mm
4EP41	4EP50

Bases mecanizadas y UCLAS

Finalidad

Ambos aditamentos actúan como elemento directo al implante que una vez moldeado y colado sirve como estructura final del diente.

La utilización de las bases mecanizadas, garantizan un óptimo ajuste con la conexión del implante evitando posibles alteraciones procedentes del colado.

Contenido

Calcinable con base mecanizada de cromo cobalto más tornillo retentivo de clínica.

Disponible también en Plexi Glass.

Para plataforma Ø 4.1 mm: 5E41CAR 5E41CR Para plataforma Ø 5.0 mm: 5E50CAR 5E50CR

Material

Torreta: Plexi Glass.

Base mecanizada

Cromo cobalto.

Tornillo

Titanio grado V.

Plataformas

Ø 4.1 mm / Ø 5.0 mm.

Tipo de restauración Atornillada

Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

35 Ncm como máximo.

Indicaciones

Base mecanizada Antirrotatoria: Indicada para coronas fijas atornilladas unitarias.

Base mecanizada Rotatoria: Indicada para restauraciones fijas múltiples, o sobredentaduras.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada. Mantenimiento en los controles clínicos.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio.

UCLA base mecanizada cromo cobalto

PLATAFORMA Ø 4.1 mm / Ø 5.0 mm			
5E41BR	5E41BAR		

UCLAS de titanio

Finalidad

Actúa como elemento directo al implante. Una vez fresada su parte superior se encera para realizar el colado. Posteriormente se cementa al pilar y se atornilla como estructura final del diente.

Contenido

Pilar UCLA de titanio más tornillo retentivo de clínica.

Indicaciones

Antirrotatorio: Indicado para coronas fijas atornilladas unitarias.

Rotatorio: Indicado para restauraciones fijas múltiples, o sobredentaduras.

Ventajas en la utilización

Mayor facilidad de acceso a la rehabilitación en los controles clínicos frente a la rehabilitación cementada.

Material

Pilar y tornillo: Titanio grado V.

Plataformas

Ø 4.1 mm / Ø 5.0 mm.

Tipo de restauración

Atornillada. Para restaurar directo a implante.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

35 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

Evita deformaciones en las zonas de conexión en los procesos de manipulación en el laboratorio.

Pilar UCLA titanio

Pilares provisionales de peek

Finalidad

Actúan como elemento temporal directo al implante. Una vez moldeada su parte superior sirve como estructura provisional del diente.

Contenido

Pilar provisional de peek más tornillo retentivo de clínica.

Indicaciones

Pilar provisional de Peek Antirrotatorio: Indicado para coronas fijas atornilladas unitarias.

Pilar provisional de Peek Rotatorio: Indicado para restauraciones fijas múltiples.

Ventajas en la utilización

Los pilares provisionales nos dan a conocer si el tratamiento se ajustara a las necesidades del paciente, estableciendo un factor aproximado de la futura rehabilitación a realizar.

Material

Pilar: Peek. Tornillo: Titanio grado V.

Plataformas

Ø 4.1 mm / Ø 5.0 mm.

Tipo de restauración

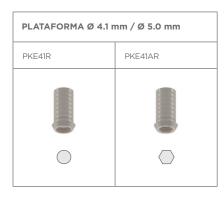
Provisional atornillada.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

10 Ncm.


Contraindicaciones de uso

En aquellos casos en los que se pueda ver comprometida la planificación de la carga/estética inmediata.

Nota

No utilizar durante un tiempo superior de 90 días.

Pilares provisionales de peek

Soluciones atornilladas anguladas

Finalidad

La solución BHS30, basada en una conexión llave-tornillo con capacidad de angulación de 0º a 30º, garantiza siempre la solución óptima a cada rehabilitación.
Esta tecnología aporta unas prestaciones mecánicas excepcionales, absoluta versatilidad y facilidad de uso, por lo que simplifica la labor protética al usuario y se adapta a sus necesidades, mejorando los costes del proceso y reduciendo la posibilidad de errores.

Contenido

Cada aditamento se comercializa por separado.

Indicaciones para rehabilitaciones

Antirrotatorio:

indicado para coronas fijas atornilladas unitarias, en implantes con divergencia. Rotatorio: indicado para restauraciones fijas atornilladas múltiples, en implantes con divergencia.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes con una importante reducción del tiempo y de los costes en materiales para su confección.

BHS30 es compatible con las técnicas de colado, Sobrecolado y mecanizado, gracias a sus bases mecanizadas de Cromo Cobalto y de Titanio.

Chimeneas disponibles en 10°, 20° y 30° de angulación.

Materia

Llave Inox. 17 4PH Stainless Steel Tornillo de Titanio grado V. Chimeneas de WIC (Resina Calcinable) Bases de Cromo Cobalto y Titanio grado V

Plataformas

Ø 4.1 mm

Tipo de rehabilitación

Atornillada

Destornillador

Conexión Cóncava Cuatrilobular

Torque de apriete tornillo

30 Ncm como máximo.

Contraindicaciones de uso

En aquellos casos en los que el orificio pasante del tornillo de clínica comprometa la estética de la rehabilitación.

Sugerencia de utilización

El sistema está diseñado para mejorar la estética y funcionalidad de las prótesis atornilladas.

UNITARIA ANGULADA N6

TORNILLOS PARA Ø 4.1 mm Y Ø 5.0 mm		
CLÍNICA	LABORATORIO	
IP02001	IP02002	

Soluciones atornilladas anguladas

PLATAFOI	PLATAFORMA Ø 4.1 mm				PLATAFORMA Ø 5.0 mm						
10º	20º	30º	10º	20º	30º	10º	20º	30º	10º	20º	30º
IP07007	IP07004	IP07001	IP07008	IP07005	IP07002	IP07065	IP07063	IP07061	IP07066	IP07064	IP07062
\bigcirc	\bigcirc	\bigcirc					\bigcirc				

CHIMENEA CALCINABLE PARA BASES MECANIZADAS								
10º	20º	30 º	10º	20 º	30º			
IP04009	IP04005	IP04001	IP04020	IP04019	IP04018			

TORNILLOS Ø 4.1 mm							
BASE DE CROMO COBA	ALTO	BASE DE TITANIO					
IP03003	IP03004	IP03005	IP03006				

Múltiple Atornillada para Transepitelial N6

TORNILLOS				
CLÍNICA	LABORATORIO			
IP02003	IP02004			
	•			

CILÍNDRO CALCINABLE, DIRECTO A TRANSEPITELIAL							
10º	20º	30°					
IP07009	IP07006	IP07003					
	1	1					

PLATAFORMA Ø 4.8 mm					
BASE CROMO COBALTO	BASE DE TITANIO				
IP03008	IP03009				
8					

			CHIMENEA CALCINABLE (COLADO + CEMENTADO)			
10º	20º	30 º	10º	20º	30º	
IP04010	IP04006	IP04002	IP04012	IP04008	IP04004	

Pilares tallables rectos

Finalidad

La solución BHS30, basada en una conexión llave-tornillo con capacidad de angulación de 0º a 30º, garantiza siempre la solución óptima a cada rehabilitación.
Esta tecnología aporta unas prestaciones mecánicas excepcionales, absoluta versatilidad y facilidad de uso, por lo que simplifica la labor protética al usuario y se adapta a sus necesidades, mejorando los costes del proceso y reduciendo la posibilidad de errores.

Contenido

Cada aditamento se comercializa por separado.

Indicaciones para rehabilitaciones

Antirrotatorio:

indicado para coronas fijas atornilladas unitarias, en implantes con divergencia.

Rotatorio:

indicado para restauraciones fijas atornilladas múltiples, en implantes con divergencia.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes con una importante reducción del tiempo y de los costes en materiales para su confección.

BHS30 es compatible con las técnicas de colado, Sobrecolado y mecanizado, gracias a sus bases mecanizadas de Cromo Cobalto y de Titanio.

Chimeneas disponibles en 10°, 20° y 30° de angulación.

Materia

Llave Inox. 17 4PH Stainless Steel Tornillo de Titanio grado V. Chimeneas de WIC (Resina Calcinable) Bases de Cromo Cobalto y Titanio grado V

Plataformas

Ø 4.1 mm

Tipo de rehabilitación

Atornillada

Destornillador

Conexión Cóncava Cuatrilobular

Torque de apriete tornillo

30 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Nota

Se mecaniza con una cara plana en la parte superior cónica del pilar para poder posicionar la corona al cementar y guardar una línea oclusal óptima con los dientes adyacente. Disponibilidad de alturas: 2.0 mm y 4.0 mm.

Pilar tallable

PLATAFORMA Ø 4.1 mm / Ø 5.0 mm					
H2	Н4				
6E41H2	6E41H4				

Pilares tallables angulados

Finalidad

Actúa como elemento directo al implante. Una vez tallada su parte superior se encera para realizar el colado corrigiendo la divergencia de la colocación de los implantes. A continuación, se atornilla y se cementa la corona definitiva al pilar como estructura final del diente.

Contenido

Pilar tallable angulado más tornillo retentivo de clínica.

Indicaciones para rehabilitaciones

Unitarias, múltiples cementadas.

Permite la corrección en implantes divergentes, nivela las alturas de emergencia de las coronas en relación a los dientes adyacentes y permite una perfecta adaptación en distintos espesores de tejido blando.

Ventajas en la utilización

Facilita el control de la estética en la reconstrucción protésica en implantes divergentes.

Permite hacer la restauración en piezas unitarias o múltiples cuando el orificio de entrada del tornillo retentivo compromete la estética.

Materia

Pilar tallable angulado y tornillo: Titanio grado V.

Plataformas

Ø 4.1 mm / Ø 5.0 mm.

Destornillador

1.25 mm Hexagonal.

Torque de apriete tornillo

35 Ncm como máximo.

Contraindicaciones de uso

Cuando la altura desde la plataforma del implante hasta la línea oclusal es de una longitud inferior a 4.0 mm.

Sugerencia de utilización

La altura de la mucosa debe ser superior a la altura del hombro del pilar.

Disponibilidad de angulaciones 15° y 25°.

Pilar tallable angulado

PLATAFORMA Ø 4.1 mm / Ø 5.0 mm					
15°	25°				
7E4115	7E4125				

Pilares de bola

Finalidad

Pilar base para la reconstrucción protésica sobredentaduras implanto-muco-soportadas sobre bolas, para maxilares inferiores.

Indicaciones

Indicados en sector anterior mandibular para prótesis completas, sobre un mínimo aconsejado de cuatro pilares de bola. El casquillo metálico se ubica en la prótesis y contiene en su interior la retención de teflón / O-ring.

Aditamentos complementarios no incluidos

Conjunto 1. Anillo titanio + O-ring. Conjunto 2. Cazoleta titanio + Retención teflón.

Ventajas en la utilización

Permiten una angulación máxima de 25° a 30°.

Recomendaciones

No utilizar e maxilar superior. Se recomienda la colocación mínima de 4 implantes en maxilares inferiores. Con el sistema O-ring dejar expuesto supragingival el pilar de bola 1.5 mm.

Materia

Pilar y anillo de Titanio grado V, O-ring de elastómero natural y retención de teflón.

Plataformas

4.1 mm / 5.0 mm.

Torque de apriete 35 Ncm.

Pilar de bola

RETENCIÓN SISTEMA	O-RING	RETENCIÓN SISTEMA TEFLÓN			
Anillo metálico	Anillo metálico O-ring		Retención de teflón		
8RAM	8ROR	8RCM	8RTF		

Notas

- Diámetro de la bola 2.50 mm.
 Disponibilidad de alturas: 2.0 mm y 4.0 mm.
- Realizar revisiones periódicamente para la sustitución de los teflones/O-ring.

Pilares LOCX®

Finalidad

Sistema de anclaje supragingival de eje resiliente para sobredentaduras sobre implantes. Consta de dos elementos: uno metálico que se atornilla directo a implante y una cazoleta metálica que va colocada en la prótesis, y contiene la retención de nylon según selección.

Contenido

Pilar LOCX®, posicionador/tránsfer de impresión, cazoleta de titanio, espaciador, retenciones: negra, azul, rosa, transparente y roja.

Aditamentos complementarios no incluidos en los sets

Retención de color naranja y verde.

Indicaciones

El sistema de anclaje "LOCX", está diseñado para la retención en dentaduras completas / parciales en implantes situados en la mandíbula o maxilar. Se recomienda un mínimo de 2 implantes en mandíbula. Se recomienda un mínimo de 4 implates en el maxilar superior.

Las retenciones con centrador color (transparente, azul y rosa) corrigen una divergencia de 10° por pilar, a diferencia, las retenciones sin centrador (roja, naranja y verde) corrigen una divergencia de 20° por pilar.

La retención de color negro se utiliza exclusivamente para el proceso del rebase en clínica/laboratorio.

Ventajas en la utilización

Mayor versatilidad en la corrección de angulaciones y durezas en las retenciones.

Materia

Pilar y cazoleta de Titanio grado V, retenciones de nylón.

Plataformas 4.1 mm / 5.0 mm.

Torque de apriete 35 Ncm.

Contraindicaciones relativas de uso

En aquellos tratamientos donde se requiera una conexión rígida total.

En implantes con divergencias superiores a 20° respecto a la vertical.

Espacio protésico reducido.

Pacientes bruxistas.

Se contraindica el uso de los aditamentos LOCX* en pacientes que presenten alergia o sean hipersensibles a los materiales en que se fabrican los mismos.

Recomendaciones

En la medida de lo posible es aconsejable dejar expuesto supragingival el pilar aprox. 1.5 mm, para evitar las presiones de las retenciones.

Se recomienda realizar la prótesis en el laboratorio para obtener un óptimo acabado de la misma. Se debe polimerizar la resina para endurecerla y eliminar los monómeros para evitar irritaciones en la mucosa.

Notas

- Se recomienda realizar controles periódicos al paciente hasta conseguir un óptimo ajuste entre el tejido blando y la prótesis.
- Realizar revisiones periódicamente para la sustitución de las retenciones.

Pilares LOCX®

PLATAFORMA Ø 4.1 mm							
H1	H2	Н3	H4	Н5	Н6		
9E41H1	9E41H2	9E41H3	9E41H4	9E41H5	9E41H6		

Retenciones LOCX®

RETENCION	RETENCIONES									
			Divergen hasta 10°				Divergen has	Divergen hasta 20°		
Set (2 Uds)	Espaciador (4 Uds.)	Cápsula metálica (4 Uds.)	Ret. Negra O Lbs. (4 Uds)	Ret. Azul 1.5 Lbs. (4 Uds)	Ret. Rosa 3 Lbs. (4 Uds)	Ret. Blanca 5 Lbs. (4 Uds)	Ret. Roja 1.5 Lbs. (4 Uds)	Ret. Naranja 2 Lbs. (4 Uds)	Ret. Verde 4 Lbs. (4 Uds)	
9RPP2	9UE	9RCM	9ROOL	9R15S	9R30M	9R50H	9R15A	9R20A	9R40A	
	0									

Instrumental LOCX®

Aditamentos LOCX®

Pilares transepiteliales

Finalidad

Aditamento mecanizado que, fijado directamente al implante, realiza la función principal de actuar como elemento intermedio entre el implante y la prótesis. La existencia en varias alturas, 1.0 mm, 2.0 mm, 3.0 mm y 4.0 mm en pilares rectos permiten elevar el plano de asentamiento de la prótesis cuando existe un grosor de tejido blando que no es adecuado para realizar una conexión directa a implante.

Sus angulaciones de 17° y 30°, permiten la corrección de disparalelismos entre implantes o bien, entre implante y dientes adyacentes.

Aditamentos complementarios incluidos

Los pilares transepiteliales angulados se suministran con posicionador y tornillo de retención.

Indicaciones

- Indicados para rehabilitaciones unitarias y múltiples.
- Para técnicas de carga o estética inmediata.
- En los casos comprometidos donde la colocación de otros tipos de aditamentos protésicos son un alto riesgo para la estética del paciente.
- En los casos con déficit importante de la masa ósea elástica mandibular, donde la colocación de implantes para otros tipos de rehabilitación supone un alto riesgo de fractura ósea.
- Importante: En casos unitarios solo se pueden utilizarlos pilares transepiteliales rectos.

Material

Titanio grado V.

Materiales torretas

Provisional: Peek, Titanio: Titanio grado V Calcinable: Plexi Glass.

Plataformas

4.1 mm / 5.0 mm.

Llaves de torque

Pilares rectos: Llave transepitelial. Pilares angulados: 1.25 mm Hexagonal.

Torques de apriete

Pilares rectos: 35 Ncm.

Pilares angulados

Troque de apriete tornillo: 35 Ncm como máximo.

Tapones pilares de cicatrización

10 Ncm.

Tornillo retención definitivo

15 Ncm

Ventajas en la utilización

Sus angulaciones permiten la corrección de disparalelismos entre implantes y/o dientes adyacentes.

Solución mínimamente invasiva con restauración fija de arcada completa para la técnica del All-on-four* colocando dos transepiteliales angulados en zona posterior y dos de rectos en zona anterior por arcada. Esta técnica permite rehabilitar una arcada completa con tan solo 4 implantes sin necesidad de realizar injertos óseos gracias a la inclinación de los transepiteliales posteriores.

Contraindicaciones relativas de uso

Estaría contraindicado en todos los casos en los que se considere mejor el uso de otro tipo de rehabilitación.

Recomendaciones

Para la planificación es necesario utilizar el tránsfer de impresión y análogo específicos para el pilar transepitelial.

Para la rehabilitación de transepiteliales unitarios, utilizar análogo, tránsfer de impresión y torretas antirrotatorias.

En caso de realizar una estética inmediata, se recomienda utilizar el pilar provisional de Peek.

Pilares transepiteliales

Transepitelial recto

PLATAFORMA Ø 4.1 mm Y Ø 5.0 mm				
H2	H4			
MUE41H2	MUE41H3	MUE41H4		

Transepitelial angulado estándar

PLATAFORMA Ø 4.1 mm Y Ø 5.0 mm			
17°	30°		
MUE4117	MUE4130		

Tapón de cicatrización transepitelial

Tránsfer transepitelial

Análogo trasepitelial

Torreta transepitelial

PROVISIONAL DE PEE	K	DE TITANIO		CALCINABLE		
Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)			Rotatoria con tornillo	Antirrotatoria con tornillo (solo para pilar recto)	
MUIEPKR	MUIEPKAR	MUIETR	MUIETR MUIETAR MI		MUIECAR	

Llave para transepitelial

MANUAL DE CONEXIÓN A CARRACA	C/A MECÁNICO
YMULLTCR	YMULLTCA

The Perfect Match

Conexiones precisas

Dado que una de nuestras principales misiones es la de de pensar y ofrecer nuevas soluciones protésicas, hemos incorporado en nuestra familia de pilares transipiteliales rectos, torretas antirrotatorias para casos unitarios.

Las tenemos disponibles en los siguientes materiales: En Peek para restauraciones provisionales. En Plexi Glass, para la realización de un mejor colado. En Titanio para quienes deseen un inmejorable ajuste.

Importante

Éstas solo están disponibles para pilares transipiteliales rectos.

Oxtein N6 Soluciones CAD CAM

Scan Body

Finalidad

Aditamento utilizado como elemento de medición para transferir virtualmente la posición del implante en el modelo de trabajo o directo desde boca, y así posteriormente proceder a la elaboración de la prótesis personalizada implantosoportada vía CAD CAM. También denominado localizador o marker.

Contenido

Scan body más tornillo retentivo.

Elementos complementarios no incluidos

Biblioteca digital correspondiente a la conexión.

Indicaciones

Realización de estructuras implantosoportadas directas a implante o transepiteliales. Colocación en boca para la toma de impresión intraoral en clínica, o colocación en el modelo de trabajo para escaneado de éste en laboratorio. Recomendable utilizar tantos scan bodies como implantes haya en la restauración para obtener mayor precisión y rapidez.

Ventajas en la utilización

Fácil lectura, sin necesidad de sprays. Sistema compatible con los principales softwares cad:

- 3shape.
- Exocad.
- Dental Wings.

Sugerencia de uso

En su uso en clínica o en boca, tener en cuenta la altura de la encía, ya que podría dificultar la lectura óptima del localizador.

Material

Scan Body Peek. Tornillo Titanio Grado V.

Tipo de destornillador Hexagonal 1.25 mm.

Torque de apriete tornillo

Scan Bodies

TRANSEPITELIAL					
Longitud 8.5 mm		Longitud 10 mm			
CLMURI	CLMUARI	CLMUR CLMUAR			
			\bigcirc		

Análogo para impresora 30

TRANSEPITELIALES	
Rotatorio	Antirrotatorio
MUU4R3D	MUU4AR3D

Oxtein N6 Soluciones CAD CAM

Interfases

Finalidad

Elemento directo al implante que una vez cementado a la corona o puente sirve como estructura final de la restauración.

Contenido

Interfase más tornillo retentivo.

Indicaciones

Interfase Antirrotatoria: Indicada para coronas fijas atornilladas unitarias. Interfase Rotatoria: Indicada para restauraciones fijas múltiples, o sobredentaduras.

Utilizar junto al scan body y biblioteca digital correspondiente para la fabricación de la prótesis definitiva.

Ventajas en la utilización

Garantiza un ajuste óptimo a la conexión del implante. Mejor distribución de las cargas.

Contraindicaciones de uso

En casos de espacio oclusal muy limitado.

Material

Interfases y tornillo: Titanio Grado V.

Tipo de destornillador

Hexagonal 1.25 mm.

Torque de apriete tornillo 35 Ncm como máximo.

Transepiteliales 15 Ncm.

Interfases

TRANSEPITELIAL			
Rotatorio / múltiples	Antirrotatorio / unitario		
CIMUR	CIMUAR		
	\bigcirc		

Oxtein N6 Tornillos

Tornillo de cierre

Características generales

Tras la inserción de los implantes, cubiertos o parcialmente cubiertos por tejido blando, y durante la fase de reparación de los tejidos de sostén, debe existir una protección de la conexión del implante para evitar su obstrucción antes de la carga de la supraestructura o prótesis. Para ello se coloca roscado el tornillo de cierre.

Ø 4.1 mm	Ø 5.0 mm
1ETC41	1ETC50

Tornillos N6

PLATAFORMA Ø 4.1 mm / Ø 5.0 mm		TRANSEPITELIALES			
Tornillo retentivo clínica	Tornillo retentivo angulados Tornillo laboratorio		Tornillo retentivo torretas	Tornillo laboratorio	Tornillo pilares angulados
1ETR	1ETRPA41	1IETL	MUIETR14	MUU1TL	MUITRA

Instrumental universal

Contenido

Mangos de instrumental	312
Rotores intercambiables	312
Adaptador conversor	312
Fresas trefinas	313
Llave carraca fija de mango largo	314
Conformador de rosca interna	314

Instrumental universal

Mangos de instrumental

Material

Acero inoxidable 420 Aleación de aluminio Ergal

Rotores intercambiables

Material

Acero inoxidable 420

CONEXIÓN CUADRADA DE 4 mm	PARA CONEXIÓN MECÁNICA
IP1391A	IP1610

Adaptador conversor

Material

Acero inoxidable 420

Fresas trefinas

Ø INTERNO 3.4 mm Ø EXTERNO 4.45 mm	Ø INTERNO 3.6 mm Ø EXTERNO 4.65 mm	Ø INTERNO 3.85 mm Ø EXTERNO 4.9 mm	Ø INTERNO 4.1 mm Ø EXTERNO 5.15 mm	Ø INTERNO 4.35 mm Ø EXTERNO 5.4 mm	Ø INTERNO 4.65 mm Ø EXTERNO 5.7 mm	Ø INTERNO 4.95 mm Ø EXTERNO 6.0 mm	Ø INTERNO 5.1 mm Ø EXTERNO 6.15 mm	Ø INTERNO 8.0 mm Ø EXTERNO 9.05 mm
IP5271A	IP5272A	IP5273A	IP5274A	IP5275A	IP5281A	IP5284A	IP5276A	IP5278A

Finalidad

Las fresas trefinas se pueden utilizar como recolectoras de hueso o explantación de implantes entre otras finalidades.

Las aberturas laterales facilitan la retirada de hueso. La profundad puede controlarse fácilmente mediante las marcas láser.

La fresa trefina es para conexión mecánica.

Material: Acero inoxidable 420. Longitud: 3.0 mm a 16.0 mm. Sugerencia de utilización:

Antes de cada uso, compruebe el estado de la trefina. Las trefinas con deformación en los dientes deben desecharse.

Velocidad recomandada: De 500 a 800 r.p.m.

Importante

En su uso debe haber una irrigación externa para reducir el riesgo de sobrecalentamiento.

Después de su utilización realizar una limpieza y desinfección siguiendo el protocolo recomendado.

Es importante revisar el instrumental antes de su uso.

La vida útil del instrumental, se determina por el riesgo de daños causados por el uso y el grado de desgaste.

Instrumental universal

Llave carraca fija de mango largo

Material

Acero inoxidable 420

Conformador de rosca interna

Material

Acero inoxidable 420

Finalidad

Sanear las impurezas o pequeñas deformaciones que puedan hallarse en la rosca interna del implante.


Disponibles para métricas: 1.6 mm, 1.8 mm, 2.0 mm.

Protocolos

Contenido

ioma de impresion	طلكط
Bases mecanizadas	318
UCLAS de titanio	320
Pilares provisionales	322
Pilares tallables	324
Pilares angulados tallables	328
Pilares de bola sobredentadura	332
Pilares Locx®	336
Pilares transepiteliales	340
Pilaes SYN	344
Interfases	346
Scan body	348
Protocolo de esterilización	350
Información importante	352

Toma de impresión M12 - M8 - L6 - N6 L35

Aditamentos y material necesario para la práctica

Para la clinica:

- Transfer de impresión para cubeta abierta o transfer de impresión para cubeta cerrada según técnica planificada.
- Para los sistemas M12 L6 N6 L35:
 Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.
- Cubeta abierta o cerrada según técnica planificada.
- Material y silicona de impresión.

Para el laboratorio:

- Análogo del implante.
- Para los sistemas M12-L6-N6-L35: Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.
- Revestimiento/yeso

Protocolo clínico

- 1 Proceda a retirar el pilar de cicatrización.
- 2 Una vez seleccionada la técnica de impresión que va a realizar (cubeta abierta o cerrada) fije el conjunto de transfer y tornillo a la conexión del implante. (Asegúrese de haber realizado un buen ajuste entre ambos componentes) Termine de roscar el tornillo retentivo y apriételo como máximo a 10 Ncm.

Nota: Es recomendable realizar una periapical previa a la impresión, para garantizar un buen ajuste entre transfer de impresión e implante.

- 3 Aplique el material de impresión en la cubeta y alrededor del transfer. (Para realizar una óptima impresión, se recomienda utilizar silicona fluida)
- 4 Introduzca la cubeta en la boca del paciente con el resto de material de impresión y espere a que éste haya fraguado.

Para la técnica:

De cubeta abierta:

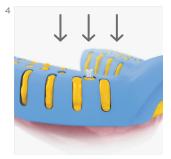
- 5 Retire el tornillo de fijación.
- 6 Arrastre axialmente la cubeta con el transfer de impresión.

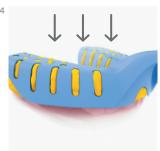
De cubeta cerrada:

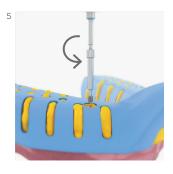
- 5 Retire directamente la cubeta una vez haya fraguado el material de impresión.
- 6 Seguidamente retire el transfer de impresión del implante.

Cubeta abierta

Cubeta cerrada







Cubeta abierta

10 Ncm máx

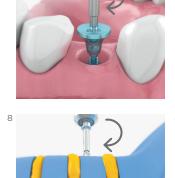
7 Coloque de nuevo el pilar de cicatrización.

Posteriormente envíe al laboratorio: Cubeta de impresión, transfer de impresión con su tornillo correspondiente, análogo de implante, registro de mordida y modelo antagonista.

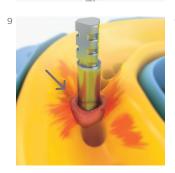
Protocolo en laboratorio

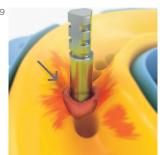
Para la técnica:

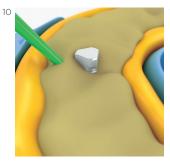
De cubeta abierta:

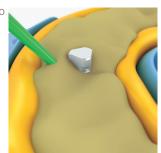

8 Posicione el análogo sobre la conexión del transfer y atorníllelo manualmente. Fije el análogo durante el atornillado con un portagujas o instrumento similar para evitar la más mínima rotación.

De cubeta cerrada:

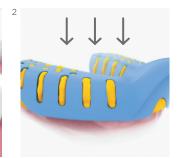

- 8 Fije el análogo sobre la conexión del transfer de cubeta cerrada y atorníllelo. Introduzca el conjunto ya montado en la cubeta/silicona haciendo coincidir las caras planas y hexágono. Confirme la falta de rotación del conjunto en la impresión.
- 9 Vacíe con resina blanda la zona correspondiente al tejido blando y espere su fraguado.
- Vacíe el resto de la cubeta con revestimiento/yeso para obtener el modelo final de trabajo.
- Una vez endurecido el yeso, separe el modelo de la cubeta y retire el transfer de impresión metálico aflojando el tornillo.

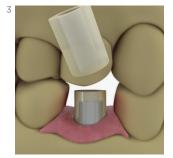

Nota: Prepare y monte el modelo en el articulador. A continuación, proceda a realizar un estudio pormenorizado respecto a la posición de implante, angulación y paralelismo, espacios y dimensiones disponibles, altura del tejido blando para la confección del perfil de emergencia y tipo de antagonista.


Una vez realizado el estudio con la información obtenida escoja los pilares y aditamentos necesarios más óptimos para la elaboración de la prótesis.



Bases mecanizadas M12 - M8 - L6 - N6 L35


Aditamentos y material necesario para la práctica

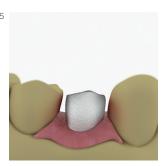

Para la clinica:

- Para los sistemas M12-L6-N6-L35: Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.
- Llave carraca dinamométrica para el control de torque.
- Materiales para la toma de impresión.

Para el laboratorio:

- Análogo del implante.
- Calcinable con base mecanizada seleccionada según planificación.
- Tornillo de laboratorio.
- Para los sistemas M12-L6-N6-L35: Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.

Protocolo inicial en clínica


- 1 Proceda a retirar el pilar de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión).

Protocolo en laboratorio

Seleccione la base mecanizada que va a usar para la rehabilitación (rotatoria o antirrotatoria), tenga en cuenta la altura de tejido blando desde la plataforma del implante al borde gingival.

- 3 Posicione la base mecanizada seleccionada al análogo. Tenga presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes antes de tallarla.
- 4 Modele la estructura en cera o resina para un posterior colado sobre la chimenea de la base mecanizada.
- 5 Posteriormente proceda a colar la estructura modelada mediante el proceso habitual utilizado.

Nota: Una vez colada proceda a pulirla si procede.

Comprobación en clínica

- 6 Proceda a retirar el pilar de cicatrización del implante.
- 7 Posicione la estructura recibida al implante con el tornillo retentivo apretado manualmente.
- 8 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los futuros puntos de contacto con los dientes adyacentes. 8
 - La futura oclusión con la arcada antagonista.

Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (conexiones cónicas internas M12 y M8) utilice el extractor de prótesis correspondiente al sistema, para desbloquear el aditamento protésico.

9 Por último, posicione de nuevo el pilar de cicatrización en el implante

Fase final de la estructura en el laboratorio

10 Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica

- ¹¹ Proceda a retirar el pilar de cicatrización del implante.
- Posicione la prótesis definitiva al implante con el tornillo retentivo suministrado con la base mecanizada. Proceda a dar torque al tornillo con el atornillador correspondiente no superando el torque recomendado en la ficha técnica del producto.
- 13 Compruebe que la estructura se ajusta correctamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 14 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

UCLAS de titanio M12 - L6 - N6 - L35

Aditamentos y material necesario para la práctica

Para la clinica:

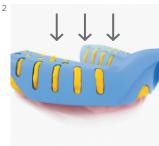
- Atornillador hexagonal de 1.25 mm.
- Llave carraca dinamométrica para el control de torque.
- Materiales para la toma de impresión

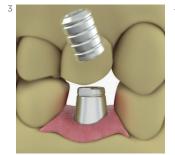
Para el laboratorio:

- Análogo del implante.
- Pilar de titanio seleccionado según planificación.
- Tornillo de laboratorio.
- Atornillador hexagonal de 1.25 mm.

Protocolo inicial en clínica

- 1 Proceda a retirar el pilar de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión).


Protocolo en laboratorio


Una vez seleccionado el tipo de UCLA de titanio que va a usar para la rehabilitación (rotatorio o antirrotatorio), tenga en cuenta la altura de tejido blando desde la plataforma del implante al borde gingival.

- 3 Posicione el Pilar seleccionado al análogo. Tenga presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes y talle la estructura a la altura planificada.
- 4 Modele en cera o resina la parte superior para un posterior cementado sobre el pilar.
- 5 A continuación proceda a colar la estructura modelada mediante el proceso habitual utilizado y compruebe su ajuste.
- 6 Una vez colada proceda a realizar el cementado dejando el orificio superior de entrada del pilar exento de material para poder pasar el tornillo retentivo.

Nota: Después de colada proceda a pulirla si procede.

Comprobación en clínica

- 7 Proceda a retirar el pilar de cicatrización del implante.
- 8 Posicione la estructura recibida al implante con el tornillo retentivo.
- 9 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los futuros puntos de contacto con los dientes adyacentes.
 - La futura oclusión con la arcada antagonista.

Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (sistema M12) utilice el extractor de prótesis correspondiente para desbloquear el aditamento protésico.

10 Por último, posicione de nuevo el pilar de cicatrización en el implante.

Fase final de la estructura en el laboratorio

11 Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica

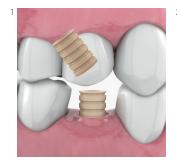
- 12 Proceda a retirar el pilar de cicatrización del implante.
- Posicione la prótesis definitiva al implante con el tornillo retentivo suministrado con el pilar.
 Proceda a dar torque al tornillo con una punta de atornillador no superando el torque recomendado en la ficha técnica del producto.
- 14 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 15 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

Pilares provisionales M12 - L6 - N6 - L35

Aditamentos y material necesario para la práctica

Para la clinica:

- Atornillador hexagonal de 1.25 mm.
- Pilar provisional peek seleccionado según planificación.
- El tornillo de laboratorio, puede facilitar el uso en las comprobaciones.


Esta técnica también se puede llevar a cabo en un laboratorio sobre un modelo, después de obtener una impresión con el método tradicional.

Seleccione el pilar provisional más adecuado para la rehabilitación a realizar.

- 1 Una vez desinfectado compruebe las alturas de tejido blando desde la plataforma del implante al borde gingival y proceda a tallar el pilar provisional teniendo en cuenta que la restauración final deberá quedar libre de la oclusión. No apriete el tornillo a un torque superior de 10Ncm
- 2 Tenga presente la altura en relación a la arcada antagonista para que ésta quede fuera de contacto.
- 3 Si quiere realizar una prótesis provisional unitaria proceda a realizar una cara plana para evitar la antirrotación.
- 4 Modele la estructura estándar de la pieza provisional, hasta ajustarla correctamente.
- ⁵ En caso de no tener una provisional, modele una con resinas específicas y preparadas para esa finalidad.

Nota: Realice comprobaciones hasta tenerla acabada. Se recomienda utilizar el tornillo de laboratorio para las reiteradas comprobaciones, con la finalidad de no dañar el tornillo retentivo que permanecerá en boca con el pilar provisional.

- 6 Una vez la pieza provisional esté moldeada y terminada, proceda a cementarla dejando el orificio superior de entrada del pilar exento de material para poder pasar el tornillo retentivo.
- 7 El par de apriete serán 10Ncm.
- 8 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 9 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

Nota: No utilizar durante un tiempo superior de 90 días.

Pilares tallables M12 - L6 - N6 - L35

Aditamentos y material necesario para la práctica

Para la clinica:

- Atornillador hexagonal de 1.25 mm.
- Llave carraca dinamométrica para el control de torque.
- Materiales para la toma de impresión.

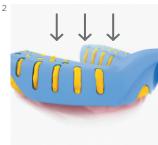
Para el laboratorio:

- Análogo del implante.
- Pilar recto tallable de titanio seleccionado.
- Tornillo de laboratorio.
- Atornillador hexagonal de 1.25 mm.

Protocolo inicial en clínica

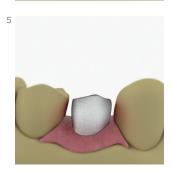
- 1 Proceda a retirar el pilar de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión).

Protocolo en laboratorio


Seleccione la altura del pilar tallable que va a usar para la rehabilitación, una vez controlada la altura de tejido blando desde la plataforma del implante al borde gingival.

Posicione el Pilar seleccionado sobre el análogo. Tenga presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes.

- 3 Proceda a tallar el pilar a la altura óptima para la reconstrucción.
- 4 Modele la estructura en cera para un posterior cementado sobre el pilar.
- 5 Seguidamente proceda a realizar el colado de la estructura modelada mediante el proceso habitual utilizado.


Nota: Una vez colada proceda a pulirla si es preciso.

Comprobación en clínica

- 6 Proceda a retirar el pilar de cicatrización del implante.
- 7 Posicione la estructura recibida al implante con el tornillo retentivo apretado manualmente.
- 8 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los futuros puntos de contacto con los dientes adyacentes.
 - La futura oclusión con la arcada antagonista.

Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (sistema M12) utilice el extractor de prótesis correspondiente para desbloquear el aditamento protésico.

9 Por último, posicione de nuevo el pilar de cicatrización en el implante.

Fase final de la estructura en el laboratorio

10 Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica

- ¹¹ Proceda a retirar el pilar de cicatrización del implante.
- 12 Posicione el pilar tallable al implante y proceda a dar torque al tornillo con una punta de atornillador, no superando el torque recomendado en la ficha técnica del producto.

Nota: comprobar la ausencia de cemento sobrante alrededor de la estructura realizada, en caso de la existencia de restos, proceder a realizar una exhaustiva limpieza para evitar futuras perimplantitis.

- 13 Una vez cementado, compruebe que la estructura final se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 14 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

Pilares tallables M8

Aditamentos y material necesario para la práctica

Para la clinica:

- Atornillador conexión Torx.
- Llave carraca dinamométrica M8 para el control de torque.
- Materiales para la toma de impresión

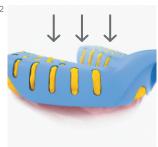
Para el laboratorio:

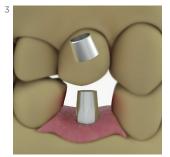
- Análogo del implante.
- Pilar recto tallable de titanio seleccionado según planificación.
- Tornillo de laboratorio.
- Atornillador conexión Torx.

Protocolo inicial en clínica

- 1 Proceda a retirar el pilar de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión).

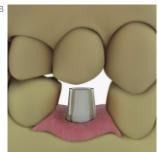

Protocolo en laboratorio


Posicione el Pilar al análogo y tenga en cuenta la altura de tejido blando desde la plataforma del implante al borde gingival.


Tenga presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes.

- 3 Proceda a tallar el pilar a la altura óptima para la reconstrucción.
- 4 Posicione el calcinable plástico encima del pilar tallado y asegúrese de que se ajusta correctamente al hombro del implante.
- 5 Una vez sentado correctamente al hombro del implante proceda a tallar el calcinable a la misma altura que la del pilar
- 6 Modele la estructura en cera para un posterior cementado sobre el pilar.
- 7 Seguidamente proceda a colar la estructura modelada mediante el proceso habitual utilizado.

Nota: Una vez colada proceda a pulirla si es preciso.





Comprobación en clínica

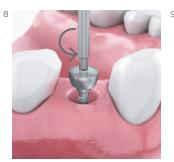
- 8 Proceda a retirar el pilar de cicatrización del implante.
- 9 Posicione la estructura recibida al implante con el tornillo retentivo.
- 10 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los futuros puntos de contacto con los dientes adyacentes. 10
 - La futura oclusión con la arcada antagonista.

Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (sistema M8) utilice el extractor de prótesis correspondiente para desbloquear el aditamento protésico.

11 Por último, posicione de nuevo el pilar de cicatrización en el implante.

Fase final de la estructura en el laboratorio

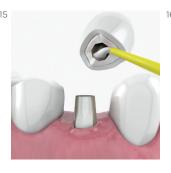

12 Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica


- 13 Proceda a retirar el pilar de cicatrización del implante.
- 14 Posicione el pilar tallable al implante y proceda a dar torque al tornillo con una punta de atornillador, no superando el torque recomendado en la ficha técnica del producto.

Nota: comprobar la ausencia de cemento sobrante alrededor de la estructura realizada, en caso de la existencia de restos, proceder a realizar una exhaustiva limpieza para evitar futuras perimplantitis.

- 15 Una vez cementado, compruebe que la estructura final se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 16 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.



Pilares angulados tallables

M12 - L6 - N6 - L35

Aditamentos y material necesario para la práctica

Para la clinica:

- Atornillador hexagonal de 1.25 mm.
- Llave carraca dinamométrica para el control de torque.
- Materiales para la toma de impresión.

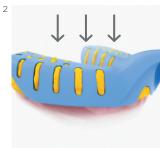
Para el laboratorio:

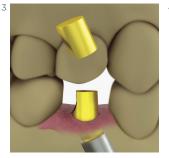
- Análogo del implante.
- Pilar angulado tallable seleccionado según planificación.
- Tornillo de laboratorio.
- Atornillador hexagonal de 1.25 mm.

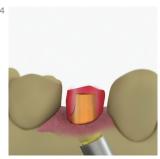
Protocolo inicial en clínica

- 1 Proceda a retirar el pilar de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión).

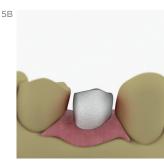
Protocolo en laboratorio


Valore la divergencia del implante y seleccione el aditamento que va a usar para la rehabilitación (disponibilidad de 15º y 25º), tenga en cuenta la altura de tejido blando desde la plataforma del implante al borde gingival.


Posicione el pilar seleccionado al análogo. Tenga presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes.


- 3 Proceda a tallar el pilar a la altura óptima para la reconstrucción.
- 4 Modele la estructura en cera para un posterior cementado sobre el pilar.
- 5 Posteriormente proceda a colar la estructura modelada mediante el proceso habitual utilizado.

Nota: Una vez colada proceda a pulirla si es preciso.



Comprobación en clínica

- 6 Proceda a retirar el pilar de cicatrización del implante.
- 7 Posicione la estructura recibida al implante con el tornillo retentivo apretado manualmente.
- 8 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los futuros puntos de contacto con los dientes adyacentes.
 - La futura oclusión con la arcada antagonista.

Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (sistema M12) utilice el extractor de prótesis correspondiente para desbloquear el aditamento protésico.

9 Por último, posicione de nuevo el pilar de cicatrización en el implante.

Fase final de la estructura en el laboratorio

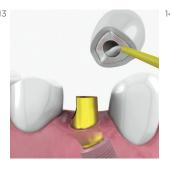
Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica

- 11 Proceda a retirar el pilar de cicatrización del implante.
- 12 Posicione el pilar angulado al implante con el tornillo retentivo suministrado con el pilar y proceda a dar torque al tornillo con una punta de atornillador no superando el torque recomendado en la ficha técnica de producto.

Nota: comprobar la ausencia de cemento sobrante alrededor de la estructura realizada, en caso de la existencia de restos, proceder a realizar una exhaustiva limpieza para evitar futuras perimplantitis.

- ¹³ Una vez cementado, compruebe que la estructura final se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 14 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.



Pilares angulados tallables

M8

Aditamentos y material necesario para la práctica

Para la clinica:

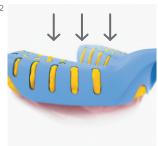
- Atornillador conexión Torx.
- Llave carraca dinamométrica M8 para el control de torque.
- Materiales para la toma de impresión.

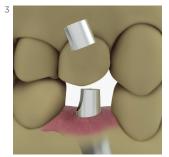
Para el laboratorio:

- Análogo del implante.
- Pilar angulado tallable seleccionado según planificación.
- Tornillo de laboratorio.
- Atornillador conexión Torx.

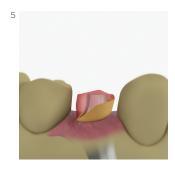
Protocolo inicial en clínica

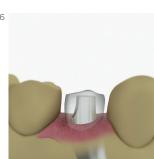

- 1 Proceda a retirar el pilar de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión)


Protocolo en laboratorio


Valore la divergencia del implante y seleccione el aditamento que va a usar para la rehabilitación (disponibilidad de angulación 15° y 20°), tenga en cuenta la altura de tejido blando desde la plataforma del implante al borde gingival.

- 3 Proceda a tallar el pilar teniendo presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes.
- 4 Una vez tallado, coloque el calcinable de hombro plástico sobre el pilar. Éste se asienta en el hombro del implante para un mejor ajuste y fácil encerado.
- 5 Modele la estructura en cera para un posterior cementado sobre el pilar.
- 6 Posteriormente proceda a colar la estructura modelada mediante el proceso habitual utilizado.


Nota: Una vez colada proceda a pulirla si es preciso.



Comprobación en clínica

- 7 Proceda a retirar el pilar de cicatrización del implante.
- 8 Posicione la estructura recibida al implante con el tornillo retentivo.
- 9 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los futuros puntos de contacto con los dientes adyacentes.
 - La futura oclusión con la arcada antagonista.

Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (sistema M8) utilice el extractor de prótesis correspondiente para desbloquear el aditamento protésico.

10 Por último, posicione de nuevo el pilar de cicatrización en el implante.

Fase final de la estructura en el laboratorio

Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica

- 12 Proceda a retirar el pilar de cicatrización del implante.
- Posicione la prótesis definitiva al implante con el tornillo retentivo suministrado con el pilar y proceda a dar torque al tornillo con una punta de atornillador no superando el torque recomendado en la ficha técnica de producto.

Nota: comprobar la ausencia de cemento sobrante alrededor de la estructura realizada, en caso de la existencia de restos, proceder a realizar una exhaustiva limpieza para evitar futuras perimplantitis.

- 14 Una vez cementado, compruebe que la estructura final se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 15 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

Pilares de bola sobredentadura M12 - M8 - L6 - N6 L35

Aditamentos y material necesario para la práctica en clínica

Técnica directa en clínica:

- Selección del pilar según altura gingival y tipo de retención planificada.
- Para los sistemas M12-L6-N6-L35: Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Utilice la llave de conexión cuadrada.
- Llave carraca dinamométrica para el control de apriete.
- Resina de rebase e instrumental para su tratamiento y manipulación.
- Fresas de desbaste y cepillo de pulido.

Protocolo para la colocación en clínica

- 1 Proceda a retirar los pilares de cicatrización del implante.
 - Seleccione la longitud de pilar y tipo de retención que va a utilizar. Para ello, tenga en cuenta la altura del tejido blando desde la plataforma del implante al borde gingival.
- 2 Posicione el pilar con la altura ya seleccionada al implante, con un torque máximo de 35 Ncm
- 3 Seguidamente marque la zona superior de bola con un rotulador/papel o tinta de articular.
- 4 Posicione la prótesis encima del borde gingival ejerciendo presión con ligeros movimientos laterales, para que se marquen los puntos donde se hallan las bolas del pilar.
- 5 Una vez marcados los puntos, proceda a fresar con una fresa de bola en las zonas marcadas, su Ø deberá ser ligeramente mayor al Ø de casquillo que vaya a utilizar y su profundidad deberá ser la suficiente para encajar la bola del pilar y que la prótesis descanse sobre el borde gingival.

Nota: Si va a utilizar las retenciones de teflón, incorpore la retención en el interior de la cazoleta de titanio, de lo contrario si va a utilizar la retención O-ring, coloque el o-ring en el interior del anillo de titanio. **Contraindicaciones:** No utilizar el sistema de retención de O-ring para el sistema de implantes M8.

6 Cubra el borde gingival con una arandela de silicona o material específico para evitar el bloqueo en la extracción de la prótesis.

Consecutivamente conexione las retenciones ya montadas sobre las bolas de los pilares.

- 7 Cúbralos con resina de rebase y rellene los orificios que ha realizado en la parte inferior de la prótesis.
- 8 A continuación, coloque de nuevo la prótesis sobre el borde gingival haciendo coincidir los orificios rellenos de material de rebase con los casquillos montados sobre las bolas de los pilares.

Nota: Déjelo el tiempo suficiente para que la resina fragüe.

- 9 Una vez la resina haya fraguado, retírela y quite el material sobrante con una fresa de desbaste de grano fino y pula la zona trabajada.
- 10 Por último, compruebe que la estructura realizada se ajuste correctamente.

Pilares de bola sobredentadura M12 - M8 - L6 - N6 L35

Aditamentos y material necesario para la práctica en clínica

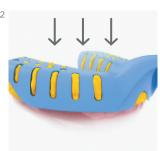
Técnica indirecta en laboratorio:

- Selección del pilar según altura gingival y tipo de retención planificada.
- Análogo del implante.
- Para los sistemas M12-L6-N6-L35:
 Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Utilice la llave de conexión cuadrada.

Resina de rebase e instrumental para su tratamiento y manipulación.

Protocolo en clínica para el envío del trabajo en laboratorio

- 1 Proceda a retirar el pilar de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión).


Protocolo de laboratorio

Sobre el modelo, valore la altura de tejido blando desde la plataforma del análogo al borde gingival. Seleccione la altura del pilar y tipo de retención que va a utilizar.

- 3 Posicione los pilares con la altura ya seleccionada a los análogos.
- 4 Seguidamente marque la zona superior de la bola con papel o tinta de articular.
- 5 Posicione la prótesis encima del borde gingival del modelo ejerciendo presión con ligeros movimientos laterales, para que se marquen los puntos donde se hallan las bolas del pilar.
- 6 Una vez marcados los puntos, proceda a fresar con una fresa de bola en las zonas marcadas, su Ø deberá ser ligeramente mayor al Ø de casquillo que vaya a utilizar y su profundidad deberá ser la suficiente para encajar la bola del pilar y que la prótesis descanse sobre el borde gingival.

Nota: Si va a utilizar las retenciones de teflón, incorpore la retención en el interior de la cazoleta de titanio, de lo contrario si va a utilizar la retención O-ring, coloque el o-ring en el interior del anillo de titanio.

Contraindicaciones: No utilizar el sistema de retención de O-ring para el sistema de implantes M8.

- 7 Consecutivamente conexione las retenciones ya montadas sobre las bolas de los pilares.
- 8 Cúbralos con resina de rebase y rellene los orificios que ha realizado en la parte inferior de la prótesis.
- 9 Coloque de nuevo la prótesis sobre el borde gingival haciendo coincidir los orificios rellenos con material de rebase con los casquillos metálicos. Déjelo el tiempo suficiente para que la resina fragüe.
- 10 Una vez ésta haya fraguado retire la prótesis y quite el material sobrante.

Nota: Por último, compruebe el ajuste y oclusión con el maxilar superior en el articulador.

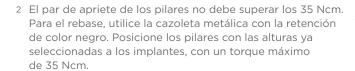
Fase final en clínica

- 11 Proceda a retirar los pilares de cicatrización de los implantes uno a uno para evitar colapsar la encía.
- 12 Coloque los pilares de bola seleccionados. Proceda a dar torque a los pilares con una punta o llave no superando los 35 Ncm.
- 13 Posicione la estructura recibida sobre las bolas de los pilares.
- 14 Compruebe que la estructura se ajusta correctamente con:
 - Las bolas de los pilares y borde gingival.
 - La oclusión con la arcada antagonista.

Pilares LOCX® M12 - M8 - L6 - N6 L35

Aditamentos y material necesario para la práctica en clínica

Técnica directa en clínica:


- Selección del pilar según altura gingival.
- Cazoleta metálica con retención negra.
- Llave de torque conexión a carraca o mecánica.
- Llave Locx para el cambio de retenciones.
- Resina de rebase e instrumental para su tratamiento y manipulación.

Protocolo para la colocación en clínica

- 1 Proceda a retirar los pilares de cicatrización del implante.
 - Seleccione la altura de los pilares Locx teniendo en cuenta la altura del tejido blando desde la plataforma de los implantes al borde gingival, para un óptimo anclaje éstos deben sobresalir 1.5 mm. por encima del borde gingival.

- 3 Seguidamente marque la zona superior del pilar Locx con un rotulador/papel o tinta de articular.
- 4 Posicione la prótesis encima del borde gingival ejerciendo presión con ligeros movimientos laterales, para que se marquen los puntos donde se hallan las bolas del pilar.
- 5 Una vez marcados dichos puntos, proceda a fresar con una fresa de bola en las zonas marcadas, su Ø deberá ser ligeramente mayor al Ø de casquillo metálico y su profundidad deberá ser la suficiente para encajar la zona de retención del pilar y que la prótesis descanse sobre el borde gingival.
- 6 Cubra el borde gingival con la arandela de silicona de color blanco para evitar el bloqueo en el momento de la extracción de la prótesis. Consecutivamente conexione la cazoleta metálica con la retención de color negro sobre los pilares.
- 7 Cúbralos con resina de rebase y rellene los orificios que ha realizado en la parte inferior de la prótesis.
- 8 A continuación, coloque de nuevo la prótesis sobre el borde gingival haciendo coincidir los orificios rellenos de material de rebase con los casquillos de titanio.

Nota: Déjelo el tiempo suficiente para que la resina fragüe.

- 9 Una vez ésta haya fraguado retírela y quite el material sobrante con una fresa de desbaste de grano fino y pula la zona trabajada.
- 10 Por último, compruebe que la estructura realizada se ajuste correctamente y realiza buena oclusión con el maxilar superior.

Nota: En el futuro seleccione la retención con la dureza más óptima para el caso rehabilitado. (Ver ficha de producto).

Las retenciones de Nylon con centrador de posicionamiento pueden corregir una divergencia máxima de solo 10° por implante, y las retenciones sin centrador pueden llegar a corregir 20° por implante.

Protocolo en clínica para el envío del trabajo en laboratorio

- 1 Proceda a retirar los pilares de cicatrización.
- 2 Seguidamente realice la toma de impresión. (Ver protocolo de impresión).

Cubra el borde gingival con la arandela de silicona de color blanco para evitar el bloqueo en el momento de la extracción de la prótesis. Coloque el posicionador/transfer de impresión en la parte superior del pilar seleccionado. Aplique el material de impresión alrededor del transfer de impresión.

Introduzca la cubeta en la boca con el resto de material de impresión y espere a que este haya fraguado.

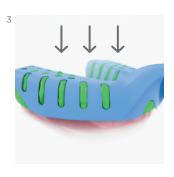
Retire directamente la cubeta una vez haya fraguado el material de impresión conjuntamente con el posicionador/transfer de impresión.

Posteriormente envíe al laboratorio: Cubeta de impresión, posicionador/transfer de impresión, análogo Locx, registro de mordida y modelo antagonista.

Aditamentos y material necesario para la práctica en laboratorio

Técnica indirecta en laboratorio:

- Cubeta de impresión, con posicionador/transfer de impresión y registro de mordida más modelo antagonista.
- Pilar Locx según altura gingival.
- Cazoleta metálica con retención negra.
- Análogo Locx.
- Llave torque Locx
- Llave Locx para el cambio de retenciones.
- Resina de rebase e instrumental para su tratamiento y manipulación.

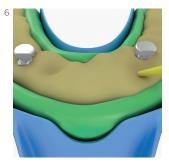


Pilares LOCX® M12 - M8 - L6 - N6 L35

Protocolo de laboratorio

- 4 Posicione el análogo sobre la conexión del posicionador/ transfer de impresión.
- 5 Vacíe con resina blanda la zona correspondiente al tejido blando y espere a que fragüe.
- 6 Vacíe el resto de la cubeta con revestimiento/yeso para obtener el modelo final de trabajo.

Posteriormente prepare y monte el modelo en el articulador


A continuación, proceda a realizar un estudio pormenorizado respecto a la posición de análogo, angulación y paralelismo, espacios y dimensiones disponibles, altura del tejido blando para la confección del perfil de emergencia y tipo de antagonista.

Una vez realizado el estudio con la información obtenida, escoja los pilares y aditamentos necesarios más óptimos para la elaboración de la prótesis.

- 7 Seleccione la altura de los pilares Locx teniendo en cuenta la altura del tejido blando desde la plataforma de los implantes al borde gingival, para un óptimo anclaje éstos deben sobresalir 1.5 mm. por encima del borde. Para su elaboración utilice la cazoleta metálica con la retención de color negro. Posicione los pilares con las alturas ya seleccionadas a los implantes.
- 8 Seguidamente marque la zona superior del pilar Locx con un rotulador/papel o tinta de articular.
- 9 Posicione la prótesis encima del borde gingival del modelo ejerciendo presión con ligeros movimientos laterales, para que se marquen los puntos donde se hallan las bolas del pilar.
- 10 Una vez marcados dichos puntos, proceda a fresar con una fresa de bola en las zonas marcadas, su Ø deberá ser ligeramente mayor al Ø de casquillo metálico y su profundidad deberá ser la suficiente para encajar la zona de retención del pilar y que la prótesis descanse sobre el borde gingival.
- 11 Cubra el borde gingival con la arandela de silicona de color blanco para evitar el bloqueo en el momento de la extracción de la prótesis.
 A continuación, conexione la cazoleta metálica con la retención de color negro sobre los pilares.
- 12 Cúbralos con resina de rebase y rellene los orificios que ha realizado en la parte inferior de la prótesis.

- 13 A continuación, coloque de nuevo la prótesis sobre el borde gingival haciendo coincidir los orificios rellenos de material de rebase con los casquillos de titanio. Déjelo el tiempo suficiente para que la resina fragüe.
- 14 Una vez ésta haya fraguado retírela y quite el material sobrante.
- 15 Por último, compruebe que la estructura realizada se ajuste correctamente y realiza una buena oclusión con el maxilar superior sobre el articulador.

Seguidamente proceda a envíar el trabajo en clínica.

Fase final en clínica

- 16 Proceda a retirar los pilares de cicatrización.
- 17 Coloque los pilares Locx seleccionados y proceda a darles el torque con su respectiva llave no superando los 35Ncm.
- 18 Posicione la estructura recibida sobre los pilares. Compruebe que la estructura se ajusta correctamente con:
 - Los pilares y borde gingival.
 - La arcada antagonista, obteniendo una óptima oclusión.

Pilares transepiteliales M12 - L6 - N6 - L35

Aditamentos y material necesario para la práctica

Para la clinica:

- Para los sistemas M12-L6-N6-L35: Atornillador hexagonal de 1.25 mm. (Para angulados)
- Llaves de apriete para transepitelial manual/mecánica. (Para rectos).
- Llave carraca dinamométrica para el control de torque.
- Tornillo retentivo definitivo de clínica.

*En caso de una planificacción de carga o estética inmediata se debera disponer del siguiente material:

- Pilar trasepitelial seleccionado según planificación.
- Transfer de transepitelial específico.
- Pila provisional de peek para transepiteliales con su tornillo retentivo.

*En caso de una planificación para una cirugía de una fase:

- Pilar transepitelial seleccionado según planificación.
- Transfer para transepitelial específico para transepiteliales.
- Tapón según planificación.
 Éstos no deben tener un torque superior de 10 Ncm.

Nota: Para ambos casos se deberá disponer de materiales para la toma de impresión.

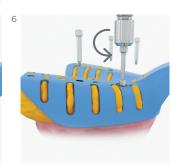
Para el laboratorio:

- Análogo para transepitelial.
- Pilar transepitelial seleccionado.
- Pilar titanio o calcinable para transepitelial.
- Tornillo retención laboratorio para transepitelial.
- Atornillador Hexagonal de 1.25 mm. (Para angulados).
- Llave de apriete para transepitelial manual. (Para rectos).

Protocolo inicial en clínica

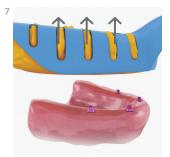
- 1 Para una rehabilitación convencional, proceder a retirar los pilares de cicatrización.
- 2 Posteriormente posicionar los transepiteliaes sobre las conexiónes de los implantes comprobando que ajusten correctamente, para el apriete ver ficha técnica de producto.
 - Transepitelial recto: Utilizar llaves de apriete de conexión a llave carraca o llave de apriete conexión mecánica.
 - Transepitelial angulado: Utilizar atornillador hexagonal de 1.25 mm.
- 3 A continuación para realizar la toma de impresión, fije el conjunto de transfer y tornillo a la conexión del transepitelial, no sobre pase el torque de los 10 Ncm al dar apriete al tornillo y asegúrese de haber realizado un buen ajuste entre ambos componentes.

All on four



Nota: Es recomendable realizar una periapical previa a la impresión, para garantizar el buen ajuste entre transfer de impresión y los transepiteliales.

- 4 Aplique el material de impresión alrededor del transfer.
- 5 Introduzca la cubeta en la boca con el resto de material de impresión y espere a que este haya fraguado.
- 6 Retire el tornillo de fijación que sobresale por la zona superior de la cubeta.
- 7 Arrastre la cubeta con los transfers de impresión.
- 8 Coloque los tapones de cicatrización y posteriormente envíe al laboratorio:
 - Cubeta de impresión.

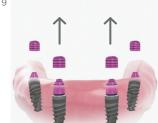


Protocolo en laboratorio

Despues de haber recibido el trabajo y haber realizado el vaciado, posicione los pilares seleccionados en los análogos.

Tenga presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes.

Nota: En caso de haber seleccionado una torreta calcinable, siga las instrucciones que se detallan en el apartado protocolo de la base mecanizada. En el caso de haber seleccionado un pilar de titanio, siga el protocolo del UCLA de titanio.


Reconstrucción múltiple

10 Ncm máx.

All on four

Comprobación en clínica

- 9 Proceda a retirar los tapones de los transepiteliales.
- 10 Posicione la prótesis definitiva a los transepiteliales con el tornillo retentivo suministrado con el pilar. Proceda a dar 10 torque al tornillo con una punta de atornillador hexagonal de 1.25 mm. no superando los 15 Ncm. Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los futuros puntos de contacto con los dientes adyacentes.
 - La futura oclusión con la arcada antagonista.

Pilares transepiteliales M12 - L6 - N6 - L35

- 11 Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.
- 12 Por último, posicione de nuevo los tapones/pilares de cicatrización en los transepiteliales.

Fase final de la estructura en el laboratorio

13 Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica

14 Proceda a retirar los tapones/pilares de cicatrización de los transepitelial.

Reconstrucción múltiple

All on four

- 15 Posicione la prótesis definitiva a los transepiteliales con el tornilo retentivo suministrado con el pilar. Proceda a dar torque al tornillo con una punta de atornillador hexagonal de 1,25mm. no superando los 15 Ncm.
- 16 Compruebe que la estuctura final se ajusta correcta y pasivamente con:
 - La conexión / plataforma del transepitelial.
 - Los puntos de contacto con los dientes adyacentes.

Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

Reconstrucción múltiple

All on four 15

* Hay disponibilidad de torretas antirrotatorias para casos unitarios. Los casos unitarios sólo se pueden rehabilitar sobre pilares rectos

Pilares SYN M8

Aditamentos y material necesario para la práctica

Para la clinica:

- Atornillador conexión Torx. (Para pilar Syn 3 piezas).
- Llave pilar Syn. (Sólo para pilar monobloque rotatório).
- Llave carraca dinamométrica para el control de torque.
- Materiales para la toma de impresión.

*En caso de una planificación quirúrgica de una fase:

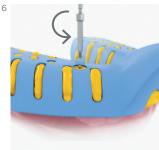
- Pilar Syn seleccionado según planificación.
 *El pilar de una pieza solo está disponible para plataforma 4.8 mm.
- Transfer para pilar Syn. (En caso de utilizar el pilar Syn monobloque rotatório, es obligatorio su uso).
- Tapón de cicatrización Syn plat. 4.8 ó plat. 6.5.
 No debe darse un torque superior de 10 Ncm.

Para el laboratorio:

- Pilar Syn seleccionado según planificación.
 *El pilar de una pieza solo está disponible para plataforma 4.8 mm.
- Análogo para pilar Syn.
- Atornillador conexión Torx.
- Llave pilar Syn. (Sólo para pilar monobloque rotatório).
- Calcinable rotatorio o antirrotatorios según caso a rehabilitar.

Protocolo inicial en clínica

- 1 Para una rehabilitación convencional, proceder a retirar el pilar de cicatrización.
- 2 Posteriormente posicionar correctamente el pilar Syn sobre la conexión de los implantes. En caso de haber utilizado el pilar Syn rotatorio "monobloque": utilizar su llave específica de apriete de lo contrario, si utiliza el pilar Syn antirrotatório "de tres piezas" utilice el atornillador Torx. El torque de apriete de ambos pilares no deben superar los 35 Ncm.
- 3 Fije el transfer y tornillo a la conexión del pilar Syn, no sobre pase el torque de los 10 Ncm, al dar apriete al tornillo, asegúrese de haber realizado un buen ajuste entre ambos componentes.
 - **Nota:** Es recomendable realizar una periapical previa a la impresión, para garantizar el buen ajuste entre transfer de impresión y el pilar Syn.
- 4 Aplique el material de impresión alrededor del transfer.
- 5 Introduzca la cubeta en la boca con el resto de material de impresión y espere a que este haya fraguado.
- 6 Retire el tornillo de fijación.
- 7 Arrastre la cubeta con el transfer de impresión.
- 8 Por último coloque el tapón de cicatrización sin realizar la extracción del pilar.



Posteriormente envíe al laboratorio: Cubeta de impresión, transfer de impresión, análogo de implante, registro de mordida y modelo antagonista.

Protocolo en laboratorio

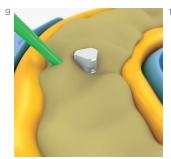
- 9 Después de haber realizado el vaciado.
- Posicione el pilar seleccionado en el análogo. Tenga presente la altura en relación a la arcada antagonista y el paralelismo con los dientes y/o pilares adyacentes.

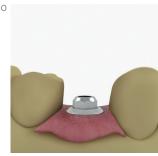
Nota: Para la rehabilitación con el calcinable, siga las instrucciones que se detallan en el apartado protocolo de la base mecanizada.

Comprobación en clínica

- ¹¹ Proceda a retirar el tapón/tapones del pilar/pilares Syn.
- 12 Posicione la corona o estructura recibida al pilar/pilares Syn.
- 13 Compruebe que la corona o estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del pilar Syn.
 - Los futuros puntos de contacto con los dientes adyacentes.
 - La futura oclusión con la arcada antagonista.

Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la corona o estructura en el modelo de trabajo.

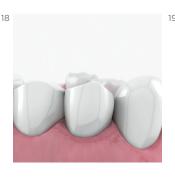

14 Por último, posicione de nuevo el tapón/tapones al pilar/ pilares Syn.


Fase final de la estructura en el laboratorio

Proceda a realizar el recubrimiento estético en la estructura realizada.

Fase final en clínica

- ¹⁶ Proceda a retirar el tapón/tapones del pilar/pilares Syn.
- 17 Posicione la corona o estructura recibida al pilar/pilares Syn con el tornillo retentivo suministrado con el pilar.
 Proceda a dar torque al tornillo con una punta de atornillador de conexión torx, no superando el torque recomendado en la ficha técnica de producto.
- 18 Compruebe que la estuctura final se ajusta correcta y pasivamente con:
 - La conexión / plataforma del pilar Syn.
 - Los puntos de contacto con los dientes adyacentes.
- 19 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.



Interfases M12 - M8 - L6 - N6 L35

Aditamentos y material necesario para la práctica

Para la clinica:

- Para los sistemas M12-L6-N6-L35:
 Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.
- Llave carraca dinamométrica para el control de torque.
- Scan body, en el caso de realizar la toma de impresión con escáner intraoral.

Para el laboratorio:

- Análogo del implante.
- Interfase seleccionada.
- Para los sistemas M12-L6-N6-L35: Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.
- Scan body y biblioteca digital correspondiente a la conexión de la interfase seleccionada.

En el caso de recibir impresión digital con los Scan bodies digitalizados, solo será necesaria la biblioteca correspondiente a la conexión, para realizar la alineación del implante.


Protocolo inicial en clínica

1 Realización de la toma de impresión tradicional (ver protocolo impresión tradicional) o mediante escáner intraoral (en este caso serán necesarios los Scan bodies correspondientes a la conexión de la interfase).

Protocolo en laboratorio

- 2 En el caso de recibir digitalmente el modelo de trabajo se procede al alineamiento digital de los Scan bodies con su biblioteca correspondiente, y así obtener el modelo en 3D con las conexiones de los implantes y comenzar el diseño virtual de la prótesis. Previo a esto, hemos de introducir esta biblioteca en nuestro software de diseño. En el caso que la clínica no disponga de escáner intraoral: Preparar el modelo, a partir de la impresión tomada en clínica (ver fase laboratorio en protocolo toma de impresión), con encía móvil de silicona, una vez lo tenemos retirar encía v atornillar Scan bodies correspondientes a la conexión de la réplica del implante colocada en el modelo, comprobar que ajustan correctamente a la plataforma, y escanear. Alinear cada uno de los Scan bodies digitalmente, con su biblioteca correspondiente, que previamente hemos introducido en nuestro software de diseño/escaneado. Obtenemos el modelo en 3D con las conexiones de los implantes y podemos comenzar el diseño virtual de la prótesis implantosoportada. Enviamos el archivo generado de la estructura a un centro de fresado o al cam de nuestra propia fresadora, y así obtenemos la estructura real.
- 3 Procedemos a la unión de la interfase a la estructura con un cemento provisional y enviamos a clínica para la prueba en boca.

Comprobación en clínica

- 4 Proceda a retirar el pilar de cicatrización del implante.
- 5 Posicione la estructura recibida al implante con el tornillo retentivo apretado manualmente.
- 6 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.

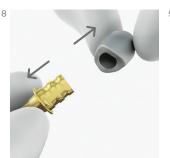
Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (conexiones cónicas internas M12 y M8) utilice el extractor de prótesis correspondiente al sistema, para desbloquear el aditamento protésico.

7 Por último, posicione de nuevo el pilar de cicatrización en el implante.

Fase final de la estructura en el laboratorio

- 8 Proceda al descementado de la interfase de la estructura para evitar oxidaciones al introducirla en el horno.
- 9 Proceda a realizar el recubrimiento estético en la estructura realizada.
- 10 Cemente la estructura terminada a la interfase con un cemento definitivo.


Envíe a clínica para su colocación en boca.

Fase final en clínica

- ¹¹ Proceda a retirar el pilar de cicatrización del implante.
- Posicione la prótesis definitiva al implante con el tornillo retentivo suministrado con la interfase. Proceda a dar torque al tornillo con el atornillador correspondiente no superando el torque recomendado en la ficha técnica de producto.
- 13 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 14 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

Scan Body M12 - M8 - L6 - N6 L35

Aditamentos y material necesario para la práctica

Para la clinica:

- Para los sistemas M12-L6-N6-L35:
 Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.
- Spray de escaneado intraoral si el escáner utilizado lo requiere.

Para el laboratorio:

- Para los sistemas M12-L6-N6-L35: Atornillador hexagonal de 1.25 mm.
- Para el sistema M8: Atornillador conexión Torx.

Protocolo inicial en clínica

- 1 Retirar tapones cicatrización, atornillar Scan bodies correspondientes a la conexión del implante colocado y comprobar que ajustan correctamente a la plataforma del implante. Recomendable verificar, previo al escaneado, el ajuste marginal del Scan body al implante radiográficamente.
- 2 Proceder a la toma de impresión mediante escáner intraoral. Enviar el archivo generado a un laboratorio, que disponga de un software CAD compatible con nuestro sistema (3shape, Exocad y Dental Wings), para que con estos datos realice el diseño de la prótesis sobre implantes.

Protocolo en laboratorio

- 3 En el caso de recibir digitalmente el modelo de trabajo se procede al alineamiento digital de los Scan bodies con su biblioteca correspondiente, y así obtener el modelo en 3D con las conexiones de los implantes y comenzar el diseño virtual de la prótesis. Previo a esto hemos de introducir esta biblioteca en nuestro software de diseño.
- 4 En el caso en el que la clínica no dispone de escáner intraoral: Preparar el modelo, a partir de la impresión tomada en clínica, con encía móvil de silicona, una vez lo tenemos retirar encía y atornillar Scan bodies correspondientes a la conexión de la réplica del implante colocada en el modelo, comprobar que ajustan correctamente a la plataforma, y escanear. Alinear cada uno de los Scan bodies digitalmente, con su biblioteca correspondiente, que previamente hemos introducido en nuestro software de diseño/escaneado. Obtenemos el modelo en 3D con las conexiones de los implantes y podemos comenzar el diseño virtual de la prótesis implantosoportada. Enviamos el archivo generado de la estructura implantosoportada a un centro de fresado o al CAM de nuestra propia fresadora, y así obtenemos la estructura real y podemos proceder al envío de ésta a la clínica.

Comprobación en clínica

- 5 Proceda a retirar el pilar de cicatrización del implante.
- 6 Posicione la estructura recibida al implante con el tornillo retentivo apretado manualmente.
- 7 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - La futura oclusión con la arcada antagonista.

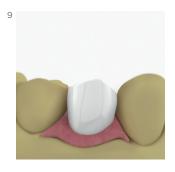
Una vez realizadas las comprobaciones mencionadas, ponga de nuevo la estructura en el modelo de trabajo.

Si en el momento de la comprobación, tiene dificultad de realizar la extracción de la prótesis (conexiones cónicas internas M12 y M8) utilice el extractor de prótesis correspondiente al sistema, para desbloquear el aditamento protésico.

8 Por último, posicione de nuevo el pilar de cicatrización en el implante.

9 Proceda a realizar el recubrimiento estético de la estructura.

Fase final en clínica


- 10 Proceda a retirar el pilar de cicatrización del implante.
- 11 Posicione la prótesis definitiva al implante con el tornillo retentivo. Proceda a dar torque al tornillo con el atornillador correspondiente no superando el torque recomendado en la ficha técnica del producto.
- 12 Compruebe que la estructura se ajusta correcta y pasivamente con:
 - La conexión / plataforma del implante.
 - Con la vía o canal mucoso realizado con el pilar de cicatrización.
 - Los puntos de contacto con los dientes adyacentes.
- 13 Por último, valore la oclusión con la arcada antagonista y estética final obtenida.

Protocolo de esterilización

Cuidado y mantenimiento del instrumental.

PRINCIPIOS GENERALES

Un implante solamente puede colocarse con éxito si los instrumentos son precisos y han sido sometidos a un mantenimiento periódico. Stein produce sus propios instrumentales usando materiales de alta calidad y precisión. Corresponde al usuario mantener los instrumentales quirúrgicos y protésicos limpios y en condiciones idóneas para su uso. Evitar la contaminación entre pacientes es fundamental e importante para las prácticas terapéuticas. Todos los instrumentales deben estar limpios, desinfectados y esterilizados antes de cualquier uso; esto también es para el primer uso después de la entrega. Limpie y desinfecte cada instrumental tras quitarle el embalaje protector de transporte. Una limpieza y desinfección eficaces son requisitos indispensables para una esterilización eficaz.

Corresponde al usuario asegurarse de que:

- solamente se usen procedimientos de limpieza, desinfección y esterilización suficientemente convalidados, específicos para el equipo o el dispositivo;
- el equipo utilizado (dispositivo de desinfección o esterilización) debe someterse a mantenimiento, y debe controlarse y calibrarse periódicamente.

Además de estas instrucciones, cumpla las normativas jurídicas válidas en su país, así como las normas higiénicas de la clínica dental o del hospital.

Nota: realice el mantenimiento y la limpieza de los instrumentales según las instrucciones recomendadas. Use cada instrumental solo para el uso previsto.

Grupos de materiales y su resistencia

Los grupos siguientes identifican los materiales usados en los instrumentales Oxtein y algunas sustancias que no deben usarse como desinfectantes ni detergentes.

Para la limpieza y esterilización, los instrumentales deben separarse según estos grupos. En particular, nunca sumerja juntos en un baño líquido instrumentales hechos con materiales distintos, ya que esto comportaría un mayor riesgo de corrosión por contacto.

Acero inoxidable

La resistencia a la corrosión del acero inoxidable se genera con la formación de una capa pasiva (capa de óxido de cromo) en su superficie. Esta capa pasiva es extremadamente resistente a numerosos materiales químicos y a los parámetros físicos. Sin embargo, es incorrecto pensar que el acero «inoxidable» no puede oxidarse. Es posible que este material se corroa en determinadas condiciones externas, como, por ejemplo, por falta de mantenimiento o un mantenimiento incorrecto. En el caso del acero inoxidable, no se recomienda usar desinfectantes ni detergentes que contengan una o varias de las siguientes sustancias: cloro, ácido oxálico o peróxido de hidrógeno (H2O2). Si se incumple esta indicación, puede producirse corrosión por picadura y por contacto.

Titanio

El titanio es un material extremadamente resistente a la corrosión y a las condiciones externas debidas a la autooxidación de su superficie. En el caso del titanio, no se recomienda usar desinfectantes ni detergentes que contengan una o varias de las siguientes sustancias: cloro, ácidos oxidantes (p. ej., ácido nítrico, ácido sulfúrico o ácido oxálico) o peróxido de hidrógeno (H2O2). Este material puede decolorarse si se incumple esta indicación.

En conclusión

En el momento de elegir detergentes y desinfectantes, asegúrese de que no contengan las sustancias siguientes:

- ácidos orgánicos, minerales u oxidantes (valor mínimo permitido de pH igual a 5);
- bases fuertes (valor máximo permitido de pH igual a 9; se aconseja usar detergentes ligeramente alcalinos);
- disolventes orgánicos (p. ej., alcohol, éter o cetona);
- sustancias oxidantes (p. ej., peróxido de hidrógeno);
- halógenos (cloro, yodo o bromo);
- hidrocarburos aromáticos/halogenados;
- sales de metales pesados;
- aldehídos.

Atención

Nunca limpie los instrumentales instrumentos ni las cajas de esterilización con cepillos metálicos o lana de acero. Ningún instrumental instrumento ni caja de esterilización puede someterse a temperaturas superiores a 134 °C.

Reutilización

La manipulación frecuente tiene efectos menores en los instrumentales. El final del ciclo de vida de un producto está determinado normalmente por el desgaste y el daño debido al uso, pero los instrumentales de corte representan una excepción (véase más adelante).

Por tanto, los instrumentales se pueden reutilizar tras el debido mantenimiento, siempre y cuando no estén dañados ni contaminados. No use los instrumentales una vez finalizado el ciclo de vida efectivo del producto y no use instrumentales dañados o contaminados.

Instrumental de corte

Si se ha realizado el debido mantenimiento y no han estado sometidos a condiciones dañinas o contaminantes, los instrumentales de corte pueden reutilizarse hasta un máximo de 10 usos (1 vez = colocación de 1 implante); se desaconseja cualquier uso posterior, más allá de esta cifra, así como el uso de instrumentales dañados o contaminados. Disponga de una lista de control de estos instrumentales, en la cual se registre el número de usos.

PREVENCIÓN

Todos los residuos quirúrgicos que se adhieren y se secan sobre los instrumentales (incrustaciones) son causa de corrosión. Los instrumentales también se dañan si están expuestos a la humedad durante periodos prolongados.

Siete medidas que ayudan a evitar problemas de mayor relevancia:

- Utilice cada instrumental solo para el uso previsto.
- Nunca deje que los residuos quirúrgicos (sangre, secreciones o residuos tisulares) se sequen sobre el instrumental; elimínelos inmediatamente tras la intervención.
- Elimine con cuidado las incrustaciones, usando solo cepillos con cerdas suaves.
- Desmonte los instrumentales y limpie a fondo los huecos.
- Nunca desinfecte, limpie (ni siquiera mediante ultrasonidos) ni esterilice juntos instrumentales hechos con materiales diversos.
- Use exclusivamente detergentes o desinfectantes

- específicos para el material y siga las instrucciones de empleo proporcionadas por los fabricantes.
- Elimine los desinfectantes y detergentes enjuagando con abundante agua ionizada.
- Nunca deje ni guarde los instrumentales húmedos o mojados.

LIMPIEZA Y DESINFECCIÓN

Principios

 Si es posible, use un método mecánico (dispositivo de desinfección) para la limpieza y desinfección. Use un método manual solo si no dispone de un método mecánico, ya que su eficacia y reproducibilidad son claramente inferiores. Esto también es aplicable si usa un baño de ultrasonidos. Realice el pretratamiento para la limpieza, ya sea manual o mecánica. Es importante usar ropa de protección durante la limpieza de instrumentales contaminados. Por su propia seguridad, use siempre gafas protectoras, una mascarilla, guantes, etc. durante todas las actividades, tenga sumo cuidado en no cortarse ni pincharse con el instrumental.

Pretratamiento

- Elimine las impurezas más grandes de los instrumentales directamente tras su uso (antes de dos horas como máximo).
- Clasifique los instrumentales por tipo de material;
 limpie, desinfecte y esterilice cada grupo por separado.
- Desmonte los instrumentales compuestos de varias partes en sus respectivas piezas individuales (p. ej., la llave carraca dinamométrica).
- Use solo un cepillo con cerdas suaves, y un trapo suave y limpio destinado exclusivamente a este uso.
- Nunca use cepillos con cerdas metálicas ni lana de acero para eliminar manualmente las impurezas.
- Enjuague todos los huecos de los instrumentales usando una jeringa desechable.
- Mueva las partes móviles, hacia delante y hacia atrás, varias veces durante la limpieza preliminar.

Nota: Siga siempre las instrucciones proporcionadas por el fabricante del detergente, desinfectante o dispositivo de desinfección.

Información importante

Información importante sobre los sistemas de implantes Oxtein.

Instrucciones de uso

Para obtener una explicación detallada de las indicaciones y las pautas de colocación de los sistemas de implantes dentales Oxtein, consulte las instrucciones de uso incluidas con cada implante.

Descripción

Todos los sistemas de implantes dentales Oxtein contienen un implante, un transportador coloreado con 3 funciones (transportador, poste de impresión y pilar tallable para cementar) y un tornillo de cierre coloreado según el diámetro del implante.

Los sistemas de implantes dentales Oxtein están disponibles en un vial esterilizado por irradiación de rayos gamma con un tratamiento de superficie descontaminada con plasma de Argón. Cada caja contiene cuatro etiquetas internas, dos con texto informativo del sistema y dos con código QR. Una de estas etiquetas debe adjuntarse al historial del paciente para futuras referencias. Las etiquetas indican las especificaciones del implante colocado, incluyendo la fecha de caducidad.

Esterilidad

Los implantes dentales Oxtein se suministran esterilizados por irradiación con rayos gamma. Dada la naturaleza del tratamiento de superficie (arenado, doble grabado al ácido y descontaminación con plasma de Argón) de los sistemas de implantes dentales Oxtein se requiere especial cuidado durante su manipulación. Solo debe usar guantes neutros o instrumentos de titanio o acero inoxidable específico para manipular los sistemas de implantes dentales Oxtein.

El instrumental quirúrgico y aditamentos protésicos no se comercializan esterilizados. Éstos deben ser esterilizados antes de su uso.

Indicaciones

Los sistemas de implantes dentales Oxtein están diseñados para su uso en edentulismo (total o parcial) tanto en maxilar como en mandíbula. Se utilizan como un soporte para una prótesis dental fija o removible. Estos sistemas de implantes están preparados y disponen de los elementos necesarios para su rehabilitación protésica mediante sistemas de CAD/CAM.

Advertencias

La elección de las dimensiones del implante es muy importante para tener un éxito a largo plazo. Se aconseja escoger el mayor diámetro y longitud de implante posible para obtener una mayor durabilidad y estabilidad primaria. No obstante, otros factores influyen en estas dos variables, sobre todo en la primera de ellas. Por otro lado, dependiendo del número de piezas a rehabilitar, siempre hay que partir del diámetro de implante recomendado en los odontogramas existentes en los procedimientos quirúrgicos. La medición se puede realizar directamente en la radiografía panorámica superponiendo las transparencias en ella, siempre que el clínico considere que el ancho óseo es suficiente para la intervención durante la exploración clínica.

En caso contrario o de duda, se aconseja la realización de una exploración radiológica tridimensional (CBCT). En caso de tener una irregularidad de cresta ósea hay que evaluarla para poder adaptarse a ella de la forma más adecuada, siempre buscando que la inserción del implante se haga lo más paralela posible a los demás implantes o dientes adyacentes. Se debe valorar también las fuerzas y patrones oclusales, así como la integración de la rehabilitación protésica prevista en el esquema y función oclusal del paciente. Se debe confirmar una disponibilidad mínima de 1,5mm. alrededor de todo el implante (salvo que se prevea realizar técnicas de regeneración ósea), respetando las estructuras nobles cercanas o alojadas en los maxilares.

Declaración sobre resonancia magnética (RM)

Los implantes u otros objetos metálicos pueden causar la pérdida de señal o distorsionar las imágenes de RMN. Esto puede ser inevitable, pero si el radiólogo tiene conocimiento de ello, se pueden hacer los ajustes necesarios cuando se obtienen e interpretan las imágenes de RMN.

Precauciones

Las técnicas necesarias para colocar el implante dental requieren mucha especialización y procesos complejos, por lo tanto, se recomienda que sea utilizado por odontólogos especialmente formados para ello. Los especialistas deben realizar y completar cursos de estudio para estar preparados para realizar las técnicas de colocación de implantes. Unas técnicas inadecuadas pueden llevar a implantes fallidos, pérdida de hueso y complicaciones

post-operatorias. La evaluación del paciente antes de un procedimiento quirúrgico para implantes es extremadamente importante. Se incluye la evaluación de la salud general, el estado de la higiene bucal, un buen estado dental y periodontal y una buena disponibilidad tanto de tejidos duros como blandos para recibir el implante. El objetivo es obtener una historia clínica/médica óptima que permita identificar la idoneidad del paciente, identificando factores de riesgo que deban ser conocidos tanto por el paciente como por el odontólogo de antemano.

Contraindicaciones

Contraindicaciones absolutas

Alergias conocidas al titanio, infarto de miocardio reciente (6 meses), problemas renales severos, problemas hepáticos severos, osteomalacia, diabetes resistentes al tratamiento, radioterapia reciente (un año) de altas dosis en la zona a intervenir, alcoholismo crónico severo, abuso de drogas, enfermedades y tumores en fase terminal.

Contraindicaciones relativas

Quimioterapia, desórdenes renales moderados, desórdenes hepáticos moderados, desórdenes endocrinológicos, desórdenes de motivación, desórdenes inmunitarios, uso prolongado de corticoesteroides, desórdenes del metabolismo de calcio y fósforo, desórdenes eritropoyéticos.

Posibles reacciones adversas

Inflamación: en las encías y en la cara. La inflamación puede durar unas 48 horas, y suele comenzar a disminuir pasado ese tiempo. La cara hinchada puede estar acompañada de rigidez en la mandíbula, causada por la inflamación. Para el alivio de dicha hinchazón se pueden aplicar paños húmedos o bolsas de hielo.

Hematomas: existen posibilidades de que la zona afectada después de la cirugía en la cara sufra un hematoma, al igual que en las encías. El hematoma puede también aumentar, afectando a una mayor parte del rostro, cuello y hombros, debido a la respuesta que se produce en nuestro organismo cuando los tejidos se alteran debido a una operación.

Dolor: el dolor en la zona donde se colocó el implante es otro de los efectos secundarios que pueden aparecer claramente. Un dolor persistente más allá de las 48 horas después de la realización de los implantes dentales puede ser un indicador claro de problemas.

Infección: un dolor continuo, fiebre, mal aliento y mal sabor de boca puede indicar que existe una infección.

Daño nervioso: un daño raro inmediato es el daño neurológico causado durante la cirugía. Un síntoma puede ser el sentir mucho dolor o no se siente el labio, la barbilla o la lengua. Por lo general, el daño nervioso se produce cuando se roza el nervio. Suele tratarse de un efecto de corta duración.

Fractura de mandíbula: al realizarse los fresados se puede producir una pequeña fractura de mandíbula. Debido a esto se puede producir dolor en la articulación mandibular.

Sinusitis: cuando se realiza un implante dental en la parte superior, hay una ligera posibilidad de sufrir daños en esta zona. El daño se produce cuando accidentalmente se fresa a través de la mandíbula y accede a la cavidad nasal, dando como resultado una infección.

Almacenamiento y manipulación

La fecha de caducidad es válida únicamente si el producto está almacenado adecuadamente en un envoltorio cerrado y sin dañar.

Todos los sistemas de implantes Oxtein que se venden estériles son de un sólo uso. No los reutilice. Su reutilización comporta riesgo de infección cruzada y pérdida de propiedades del dispositivo. Deséchelos después de su uso de acuerdo con las normativas vigentes.

Precaución

La ley establece que solo cirujanos y odontólogos acreditados pueden utilizar implantes en cirugía. El uso por parte de cualquier otra persona está terminantemente prohibido.

The Perfect Match

Entre nuestro equipo y nuestros clientes

Oxtein es el encaje perfecto entre servicio especializado y producto de alta gama.

Por esto, ponemos a disposición de nuestros clientes un equipo de asesores clínicos especializados en implantes dentales.

Puede contactarnos a través de: oxtein.com - 900 393 939 - atencion.cliente@proclinic.es